Ing - Civ (Mag.)(ord. 270) - MI (488) INGEGNERIA CIVILE - CIVIL ENGINEERING

*

A

ZZZZ

099243 - EARTHQUAKE RESISTANT DESIGN (I.C.)

095878 - EARTHQUAKE RESISTANT DESIGN

Obiettivi dell'insegnamento

The goal of the course is to enable students to have a sound knowledge of the response of structures to earthquakes, and master the engineering methods and approaches necessary for the design of safe structures in earthquake prone areas.

The course covers the main physical aspects of the response of structures to ground motion, the rules commonly adopted for the design of structures for seismic actions and their application to structural design as intended by the European a-seismic norm Eurocode 8, the evaluation of the performance of existing structures. Each topic is treated both theoretically and practically through project works.

Risultati di apprendimento attesi

The purpose of the classes and application sessions is to let the students

- understand the physical laws governing the response of structures to the ground motion and

- acquire the knowledge of the rules to be followed for the correct design of structures in seismic areas, as specified by the most common building codes.

As a consequence, students should also become capable of a critical evaluation of the behaviour exhibited by real structures under the effect of seismic actions.

All the above implies the acquisition of the correct terminology which is commonly in use in seismic engineering problems, through which effective communication capabilities can be developed.

By the end of the course, the learning capabilities of the class are assessed through suitable exam modalities.

Argomenti trattati

Although the course “099243 - EARTHQUAKE RESISTANT DESIGN (I.C.)” is constituted by two modules ( Earthquake Resistant Design 1 and 2 ), these are fully integrated and both spread over the two semesters. The following list of topics corresponds to the total contents of the integrated course.

First part : Design of new building structures for earthquake resistance.

Seismic action definition:

fundamentals of seismology: seismic wave origin and propagation; surface motion description and effects;

seismic response of SDOF systems: the response spectrum;

Linear response of buildings to the seismic motion:

modal analysis of frame structures;

structural modelling for seismic analysis: mass and stiffness representation;

linear analysis of frame structures: static equivalent, modal, and time history analysis;

Non linear response of structures:

the behaviour factor theory;

global and local ductility demands;

global and local collapse mechanisms and capacity design;

structural regularity;

response computation: non-linear static analysis.

Design of buildings for seismic actions:

reference building codes: Eurocode 8 (Part 1), Italian Code (NTC-08);

general requirements for the design of building structures;

concrete structures: structural typologies, behaviour factors, specific rules for the design of structural elements (beams, columns, nodes, walls);

steel structures: structural typologies, behaviour factors, specific design rules, action modification in the capacity design.

Criteria for the sizing of buildings under seismic actions.

Numerical analysis of buildings for seismic actions:

finite element analysis by commercial codes;

comparison between experimental and numerical response of structures;

analysis and design of typical frame buildings.

Second part : Special problems and special structures.

Base isolation and energy dissipation;

Amplification of seismic motion in relation to local soil conditions;

Seismic response of existing structures: knowledge levels and confidence factors;

structural details and strengthening interventions;

vulnerability analysis;

guide-lines for monumental structures (churches and palaces).

5. Special structures (bridges, silos, …).

Prerequisiti

The course requires a sound knowledge of structural dynamic concepts; it is also required, of course, to be familiar with structural mechanics and applied structural mechanics, with special reference to the design of reinforced concrete structural elements.

Modalità di valutazione

For the exam, students are required to prepare three written reports in relation to:

critical evaluation of the experimental behaviour of a frame model by means a numerical model;

analysis and design of a building structure (detailed design of beams, columns, joints, walls);

evaluation of the response of an existing masonry structure.

The final exam consists in a discussion of the reports. These can be prepared by groups of two or (maximum) three students.

The above exam modalities allow to assess the achievement of the following goals by the students:

- understanding of the physical concepts governing the response of structures to the ground motion;

- knowledge of the rules commonly adopted for the design of structures for seismic actions and ability to use them in technical applications;

- critical evaluation of the performance of existing structures under the effect of earthquakes;

- acquisition of a proper terminology for the discussion of the seismic behaviour of structures.

Bibliografia

CEN / TC250 / SC8, Design of structures for earthquake resistance. General rules, seismic actions, rules for buildings, Editore: CEN, Anno edizione: 2004 Note:

Norma europea EN-1998-1: Eurocode 8 - Part 1

Edmund Booth, Progettazione sismica di edifici, Editore: EPC, Anno edizione: 2015, ISBN: 978-88-6310-690-9 Note:

Italian version

Edmund Booth, Earthquake Design Practice for Buildings (3rd edition), Editore: Thomas Telford, Anno edizione: 2014, ISBN: 9780727757944 Note:

English version (original)

Aurelio Ghersi, Pietro Lenza, Edifici antisismici in cemento armato, Editore: Dario Flaccovio, Anno edizione: 2009, ISBN: 8877588799
Andreas Kappos, G.G. Penelis, Earthquake Resistant Concrete Structures, Editore: CRC Press, Anno edizione: 1996, ISBN: 9780419187202
Michael Fardis, Seismic Design, Assessment and Retrofitting of Concrete Buildings based on EN-Eurocode 8, Editore: Spinger, Anno edizione: 2009, ISBN: 978-1-4020-9842-0
Michael N. Fardis, Eduardo Carvalho, Amr Elnashai, Ezio Faccioli, Paolo Pinto, Andre Plumier, Designer's Guide to Eurocode-8: Design of Structures for Earthquake Resistance, Editore: Thomas Telford, Anno edizione: 2005, ISBN: 978-0-7277-3348-1
Michael N. Fardis, Eduardo Carvalho, Amr Elnashai, Ezio Faccioli, Paolo Pinto, Andre Plumier, Guida all'Eurocodice-8: Progettazione delle Strutture per la Resistenza Sismica, Editore: EPC, Anno edizione: 2011, ISBN: 978-88-6310-276-5

Forme didattiche

Tipo Forma Didattica

Ore di attività svolte in aula

(hh:mm)

Ore di studio autonome

(hh:mm)

Lezione

32:30

48:45

Esercitazione

17:30

26:15

Laboratorio Informatico

0:00

0:00

Laboratorio Sperimentale

0:00

0:00

Laboratorio Di Progetto

0:00

0:00

Totale

50:00

75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione

Insegnamento erogato in lingua
Inglese

Disponibilità di materiale didattico/slides in lingua inglese

Disponibilità di libri di testo/bibliografia in lingua inglese

Possibilità di sostenere l'esame in lingua inglese

Disponibilità di supporto didattico in lingua inglese