logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2019/2020
Scuola Scuola di Ingegneria Civile, Ambientale e Territoriale
Insegnamento 054159 - EMERGENCY PLANS FOR HYDROGEOLOGICAL RISK
Docente Longoni Laura , Molinari Daniela , Radice Alessio
Cfu 16.00 Tipo insegnamento Corso Integrato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing - Civ (Mag.)(ord. 270) - LC (437) CIVIL ENGINEERING FOR RISK MITIGATION*AZZZZ054159 - EMERGENCY PLANS FOR HYDROGEOLOGICAL RISK
053400 - LABORATORY OF EMERGENCY PLANNING
099475 - LABORATORY OF EMERGENCY PLANNING FOR ENG4SD
094808 - HYDROGEOLOGICAL RISKS IN MOUNTAIN AREA
Ing - Civ (Mag.)(ord. 270) - MI (488) INGEGNERIA CIVILE - CIVIL ENGINEERING*AZZZZ054159 - EMERGENCY PLANS FOR HYDROGEOLOGICAL RISK

Obiettivi dell'insegnamento

The integrated course comprehends two modules of HYDROGEOLOGICAL RISKS IN MOUNTAIN AREA and a module of LABORATORY OF EMERGENCY PLANNING. The structure of the course then requires the ability to merge several disciplines with different approaches in order to create a complete hydrogeological risk scenario and produce an emergency plan to orient human decisions and actions under stress.

The main goal of the engineering geology part of the course is to improve the knowledge of geological and geomorphological processes in a hydrographic basin, studying landslides as well as the erosion phenomenon, achieving the capability to critically interpret any quantitative information.

The final purpose of the hydraulics part is that the students achieve a solid theoretical knowledge and the capability to perform hydro-morphologic risk assessment, simulating natural processes by a variety of models and finally obtaining relevant conclusions for any investigated case of study.

Finally, the laboratory aims at making students understand the challenges implied in the development of a technical support (the plan) exploiting the technical information and more managerial aspects, for which organisational and social factors are central issues. This objective requires the ability to understand, elaborate and synthesise information coming from different disciplines into a usable and useful tool.

(FOR MORE DETAIL, REFER TO THE FORMS FOR THE INDIVIDUAL PARTS OF THE INTEGRATED COURSE)


Risultati di apprendimento attesi

Knowledge and understanding:

After successfully taking the exam, the student:

knows the different approaches to study hydrogeological processes

knows the theory of mass movements, erosion processes, and landslide monitoring

knows the theory of river hydrodynamics, river sediment transport and morphology, urban flooding

knows the theory of emergency planning, scenario development, and damage assessment

Applying knowledge and understanding:

After successfully taking the exam, the student is able to:

define the physical model of an unstable slope, define the total amount of erosion for a whole hydrographic basin, andpropose several mitigation measurements or monitoring system for mass movements

construct and run a one-dimensional river hydro-morphologic model or a two-dimensional model for urban inundation

develop a complete event scenario with flood damage assessment and construct an emergency plan

Making judgments:

The student has gained the ability to:

define single- and multiple-risk scenarios

critically and autonomously parameterize hydrogeological models, identify critical points and propose approaches for improvement

handle uncertainties typical of the emergency planning processes, critically evaluate what would work and what would not in an emergency plan

Communication skills:

After successfully taking the exam, the student has proven the ability to:

clearly convey to any audience the conclusions of a performed study with appropriate motivation


Argomenti trattati

Engineering Geology

Introduction geological processes (landslide and erosion) in a mountai area

Geological Hazard and Risk hazard and risk definition, methodologies at various scales, limitations of methods and approaches to the real geological engineering problems.

Assessment and Monitoring Analysis of the main triggering factors for local processes and widespread events.

Physical model Geometric representation of the problem, conceptual model at different scales, boundary conditions and physical parametrization.

Erosion empirical and phydical approaches to define the total amount of erosion in a hydrographic basin

From slope erosion and mass movements to flood risk: analysis of the consequences of sediment yield in river morphology and flood risk, sediment transport and damages.

River Hydraulics

  • River morphology: modelling. Basics of river sediment transport: sediment properties, bed load and suspended load. Threshold conditions for sediment transport; sediment transport capacity and sediment transport rate. System of the Saint-Venant and Exner equation for one-dimensional hydro-morphologic modelling. Parameterization. Tools for numerical modelling.
  • Urban floods. Refresh of two-dimensional river modelling by the shallow-water equations; parameterization, boundary and initial conditions. Considerations on model application to urban areas. Tools for numerical modelling.

Emergency planning

  • Basics of emergency planning. What is an emergency plan. What are its main contents. Which are the main challenges. Examples of effective emergency plans.
  • Complete event scenario developing. The complete event scenario as the base of emergency planning. How to build a complete event scenario. Examples of complete event scenarios.
  • Flood damage: modelling. State of art damage models for the assessment of direct damage. Modelling social vulnerability. Modelling systemic vulnerability of lifelines. Translating vulnerabilities into damage/impacts
  • Early warning systems. The “Total” Early Warning Systems concept. Monitoring and forecasting. Risk knowledge. Response capability. Dissemination and communication.
  • Response planning. The Response as a dynamic process. The phases of the response. Resources allocation. Handling with uncertainty. Validation.
  • Return to normalcy. Temporal scales, required knowledge and procedures.

Application classes: All the therotical knowledge is then applied to a real case study, for which the aspects treated during the lectures shall be considered.

 


Prerequisiti

Fundamentals of open-channel flow, one-dimensional and two-dimensional river modelling. These topics are taught in the course of "River Hydraulics for Flood Risk Evaluation" on the first year of the CERM program.

Fundamentals of risk assessment and management. These topics are taught in the course of “Tools for risk mitigation” on the first year of the CERM program

 


Modalità di valutazione

The student may sit for the exam at any call, provided that a report of the work done during the application classes has been sent in advance for preliminary evaluation. During the application classes, in fact, students are asked to solve exercises and to produce models quantifying a hazard scenario for a mountain town; they also prepare an emergency plan to cope with the modelled scenario. Preparation of the report is a first step thanks to which the student can do a self-evaluation in terms of acquired knowledge and applicative ability. The report is also a basis for evaluating the students' ability to convey their results in written form.

The exam is oral and involves both theoretical questions and a discussion of the results for the case-study analysis (presented in the report). Thanks to the theoretical questions, the examiners verify that the requested knowledge has been acquired. The student presents the computations included in the report for an assessment of judgement and communications skills.


Bibliografia
Risorsa bibliografica obbligatoriaPLEASE REFER TO THE FORMS FOR THE SINGLE PARTS.

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
104:00
156:00
Esercitazione
56:00
84:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 160:00 240:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese

Note Docente
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT
11/08/2020