logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2019/2020
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 052820 - SOUND ANALYSIS, SYNTHESIS AND PROCESSING
Docente Sarti Augusto
Cfu 10.00 Tipo insegnamento Corso Integrato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (263) MUSIC AND ACOUSTIC ENGINEERING*AZZZZ054273 - SOUND ANALYSIS, SYNTHESIS AND PROCESSING MODULE 2: SOUND SYNTHESIS AND SPATIAL PROCESSING
052820 - SOUND ANALYSIS, SYNTHESIS AND PROCESSING
054275 - SOUND ANALYSIS, SYNTHESIS AND PROCESSING MODULE 1: DIGITAL AUDIO ANALYSIS AND PROCESSING
Ing Ind - Inf (Mag.)(ord. 270) - MI (474) TELECOMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI*AZZZZ088967 - SOUND ANALYSIS, SYNTHESIS AND PROCESSING
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA*AZZZZ088967 - SOUND ANALYSIS, SYNTHESIS AND PROCESSING

Obiettivi dell'insegnamento

This course offers a comprehensive collection of fundamentals tools for for audio and acoustic signal analysis and processing, as well as synthesis and rendering. A wide range of applications will be covered, including time and pitch scaling, musical sound synthesis, sound restoration and improvement, music information retrieval, sound classification, acoustic source localization and tracking, adaptive processing, sound reverberation, 3D audio capturing and rendering, etc.


Risultati di apprendimento attesi

The student will learn the fundamental tools of audio and acoustic signal processing and will acquire the ability to use such tools for applications of audio and acoustic signal analysis, synthesis, processing, improvement and restoration.


Argomenti trattati

Part 1 -  Digital audio analysis and processing

 

In this first part we cover relevant applications of digital audio signal processing for various applications, ranging from audio restoration to adaptive audio processing and array processing. After a brief introduction to acoustics and psycho­acoustics, we will cover:

  • Sinusoidal modeling - resolution of periodic signals and windowing, spectral interpolation, sinusoidal peak tracking and continuation. Speech modeling (synthesis through analysis). Channel and phase vocoder design.
  • Statistical audio processing - Wiener filtering: problem statement, orthogonality principle, Wiener-Hopf eqs., error performance surface. Typical applications of Wiener filtering: echo cancellation, noise cancellation, etc. Linear Prediction Coding: problem statement and application. Kalman filtering: problem statement, Bayesian model. Equalization: typical DSP structures for equalization.
  • Audio restoration - noise modeling, removal of typical audio artifacts: clicks, crackles, background noise, hissing noise, wow and flutter, nonlinear distortions. Statistical filtering and equalization
  • Fundamentals of microphone array signal processing - data model, non parametric methods (beamforming and Minimum Variance Distortionless Beamforming). Parametric methods: MUSIC.
  • Feature extraction and analysis: low-level descriptors (time-domain, spectral and timbral features), sound classification and similarity (dimensionality reduction, PCA classification methods).

 

Part 2 - Sound synthesis and spatial processing

In this second part we introduce techniques for sound synthesis and spatialization/reverberation; and for a high-end rendering of audio signals. Using numerical methods and signal processing tools, we discuss traditional techniques for musical sound synthesis such as wavetable, additive, subtractive, granular and nonlinear synthesis techniques; more advanced sound synthesis solutions such as modal synthesis and sound synthesis through physical modelling with particular reference to finite elements, digital waveguide networks, wave digital filters, etc. 

We also introduce techniques for digital audio enhancement/improvement such as sound effects, reverberation and spatialization. Finally, we discuss advanced sound rendering techniques based on multi-channel processing and spatial (array) processing such as ambisonics, acoustic beamforming/projection and wavefield synthesis.

  • Sound synthesis: additive and subtractive synthesis, granular synthesis, wavetable synthesis, nonlinear distortion (ring modulation, phase/frequency modulation), fractal synthesis.
  • Physical sound modelling for timbral synthesis: modal synthesis and functional transformation method, finite elements, Cordis-Anima, digital waveguides, wave digital structures, object-based modelling.
  • High-end sound effects and sound processing: modulated digital delay lines, sound effects, reverberation and spatialization algorithms (DSP solutions, geometric methods, physical modelling methods, perceptual techniques), binauralization, head-related transfer function, multi-channel processing, ambisonics.  
  • Space-time processing and array processing: uniform and non-uniform speaker arrays, beamforming and acoustic projection, polar emission shaping, wavefield synthesis.

Prerequisiti

In order to best approach this course, the student should have a reasonable grasp of linear algebra; Fourier analysis and signal decomposition; signal theory; probability theory; and the basics of circuit theory. 


Modalità di valutazione

The final course grade is computed as the arithmetic average of grades individually earned for the two modules.

For each module the student is required to do a written test, whose grade can be integrated with a project. If the student decides not to do the project for a course module, the written test grade will be clipped to 27/30, otherwise the "unclipped" grade will be averaged with the project grade.

The project must be preliminarily negotiated with a course instructor and can be either a software application or a research paper. Projects for the two modules can be combined and can be done in collaboration with other students.


Bibliografia
Risorsa bibliografica facoltativaMark Kahrs, Karlheinz Brandenburg, Applications of Digital Signal Processing to Audio and Acoustics, Editore: Springer-Verlag, Anno edizione: 1998, ISBN: 9781475783865
Risorsa bibliografica facoltativaSimon Haykin, ADAPTIVE FILTER THEORY, Editore: Pearson, Anno edizione: 2014, ISBN: 9780273764083
Risorsa bibliografica facoltativaSimon J. Godsill, Peter J. W. Rayner, Digital Audio Restoration: A Statistical Model Based Approach, Editore: Springer-Verlag, Anno edizione: 1998, ISBN: 9783540762225
Risorsa bibliografica facoltativaPetre Stoica, Randolph Moses, Introduction to Spectral Analysis, Editore: Prentice Hall, Anno edizione: 1997, ISBN: 9780132584197

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
60:00
90:00
Esercitazione
40:00
60:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 100:00 150:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.4 / 1.6.4
Area Servizi ICT
10/07/2020