Risorse bibliografiche
 Risorsa bibliografica obbligatoria Risorsa bibliografica facoltativa
 Scheda Riassuntiva
 Anno Accademico 2018/2019 Tipo incarico Dottorato Insegnamento 050745 - INTRODUCTION TO SOLID MECHANICS - NONLINEAR CONTINUUM ANALYSIS AND DISCRETE ELEMENT APPROACH. Docente Casolo Siro Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Dottorato Da (compreso) A (escluso) Insegnamento
MI (1367) - ARCHITETTURA, INGEGNERIA DELLE COSTRUZIONI E AMBIENTE COSTRUITO / ARCHITECTURE, BUILT ENVIRONMENT AND CONSTRUCTION ENGINEERINGAZZZZ050745 - INTRODUCTION TO SOLID MECHANICS - NONLINEAR CONTINUUM ANALYSIS AND DISCRETE ELEMENT APPROACH.

 Programma dettagliato e risultati di apprendimento attesi
 BASIC MISSION AND TRAINING GOALS The course gives a fundamental, conceptual account of the main elements of solid mechanics with the aim to fill the gap between the traditional courses of strength of materials and the most advanced approaches of computational mechanics. The non-linear solid mechanics is introduced by addressing finite kinematics, material frame indifference, constitutive models, and some non-linear material behaviors. Finally, a full discrete approach is also presented to approximate some specific material behaviours. In this context, lattice models, rigid body-springs and peridynamics approaches are also included. The matter of the course is focued on principles and formulations while the solution techniques are fairly left out. MAIN SUBJECT AND PROGRAMME OF THE COURSE Specific topics: 1. Kinematics of deformations. Transformations, motions, kinematics of local deformation. Finite rotations, the polar decomposition, the spectral decomposition. (MV) 2. Conservation laws. Conservation of mass. Conservation of linear momentum. Conservation of angular momentum. Conservation of energy. The principle of virtual work. Basic on thermodynamics for constitutive laws. (AP) 3. Constitutive theories. Material frame indifference. Coleman-Noll’s theory of equilibrium constitutive equations. Thermodynamic potentials (Helmholtz, Enthalpy, Gibbs energy). Kinetic relations. Material classification. (AP) 4. Finite Hyper-elasticity. Elastic symmetry. Internal constraints. Elastic materials: isotropic, transversally isotropic, anisotropic materials. (MV + AP) 5. Finite Plasticity. Multiplicative decomposition of the deformation gradient. Exponential and logarithmic mapping. J2 plasticity. Pressure dependent plasticity (AP) 6. Macroscale modelling of elasticity by adopting discrete elements: RBSM, Peridynamics. Isotropy, ortotropy, examples of relation between macroscopic elastic response and some internal textures. (SC)

 Note Sulla Modalità di valutazione
 LEARNING EVALUATION The learning evaluation will consist in a theoretical exam (written or oral) on the whole program, to be taken under individual appointment.

 Intervallo di svolgimento dell'attività didattica
 Data inizio 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31   Gennaio Febbraio Marzo Aprile Maggio Giugno Luglio Agosto Settembre Ottobre Novembre Dicembre   2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Data termine 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31   Gennaio Febbraio Marzo Aprile Maggio Giugno Luglio Agosto Settembre Ottobre Novembre Dicembre   2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

 Calendario testuale dell'attività didattica
 Mon 12 Nov (10:00 - 12:00, DMAT, Sala Lavagne, 5^ piano) - MV -Tensors. Tensor product. Components. Symmetric and skew-symmetric tensors. Deviatoric and isotropic parts. Invariants. Eigenvalues, eigenvectors and characteristic equation.   Wed 14 Nov (15:30 - 17:30, DMAT, Sala Lavagne, 5^ piano) - MV - Spectral decomposition theorem. Polar decomposition theorem.  Fri 16 Nov (10:00 - 12:00, DMAT, Sala Lavagne, 5^ piano) - MV - Vector and tensors fields. Gradient and divergence of a vector and a tensor field. Divergence theorem.  Mon 19 Nov (10:00 - 12:00, DMAT, Sala Lavagne, 5^ piano) - MV - Deformations of continuous bodies. Deformation and displacement gradient. Homogeneous deformations. Cauchy-Green strain tensors. Deformation tensors. Stretch and shear. Principal axes of strain. Wed 21 Nov (15:30-17:30, DMAT, Sala Lavagne, 5^ piano) - MV - Motions. Velocity and acceleration. Lagrangian and Eulerian description. Mass and density. Conservation of mass. Local equation of mass conservation. General balance equation: global and local form.  Thu 22 Nov (9:30-11:30, DICA, Aula Lilla) - AP - Thermodynamics laws Thu 22 Nov (14:00-16:00, DICA, Aula Lilla) - AP - Material frame indifference, Coleman-Noll method Wed 28 Nov (9:30-11:30, DICA, Aula Azzurra) - AP - Hyperelasticity, formulations with invariants ans spectral decomposition Wed 28 Nov (14:00-16:00, DICA, Aula Azzurra) - AP - J2 and pressure dependent small strain plasticity and finite plasticity Thu 29 Nov (9:30-11:30, DICA, Aula Lilla) - AP - Complex materials: fiber reinforced tissues, nematic liquid crystals, metamaterials Tue 18 Dec (9:30-12:00, DABC, Ed.5, Piano 2 Sala Riunioni 008) - SC - Full discrete modelling of solid elasticity. From Cauchy-Poisson to Voigt’s molecular approach. Some examples of 2-D discrete formulation adopting rigid body and springs and peridynamics. Thu 20 Dec (9:30-12:00, DABC, Ed.5, Piano 1 Sala Riunioni 010) - SC - Some aspects and typical approximations of a full discrete configuration when dealing with isotropy, orthotropy, failure criterion.

 Bibliografia
 G.A Holzapfel, Nonlinear solid mechanics, Editore: Wiley, Anno edizione: 2000

 Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
35.0
esercitazione
0.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

 Informazioni in lingua inglese a supporto dell'internazionalizzazione
 Insegnamento erogato in lingua Inglese

 Note Docente
 schedaincarico v. 1.6.1 / 1.6.1 Area Servizi ICT 26/01/2020