logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2018/2019
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 097516 - GRAPHENE AND NANOELECTRONIC DEVICES [I.C.]
  • 097515 - NANODEVICE CHARACTERIZATION
Docente Chrastina Daniel
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA*AZZZZ097516 - GRAPHENE AND NANOELECTRONIC DEVICES [I.C.]
097607 - NANODEVICE FABRICATION AND CHARACTERIZATION

Obiettivi dell'insegnamento

As modern technology moves ever further into the nanoscale, it becomes essential to extend fundamental solid-state physics knowledge to systems of reduced dimensionality. The tools developed to understand charge transport in high mobility 2-dimensional systems, such as semiconductor heterostructures and graphene sheets, focus on the behaviour of electrons in solids in electric and magnetic fields. The study of the rich physics seen in these systems at low temperatures and high magnetic fields allows an understanding to be developed of state-of-the-art devices operating under everyday conditions, which is fundamental to the development of future technology.


Risultati di apprendimento attesi

The student understands the main physical phenomena relevant to low-dimensional semiconductor structures and devices, and how to recognise and evaluate these phenomena in terms of their manifestation in experimental results. 

The student understands how to extract important parameters and figures of merit from experimental transport data, and how to design experiments which can measure these data.

The student understands the main structural characterization methods used for semiconductor materials.

The student will understand some of the concepts which will prepare the student for the second part of the integrated Graphene and Nanoelectronic Devices course, Graphene Nanoelectronics and Nanofabrication.


Argomenti trattati

Linear transport theory: scattering mechanisms and screening, quantum and transport lifetimes.


The Boltzmann equation: relaxation time approximation, electrical and thermal conductivity and thermoelectric processes.


2-dimensional carrier gases: ballistic transport, high electron mobility transistors.


Weak magnetic fields at low temperature: weak localization.


Strong magnetic fields at low temperature: Landau levels, Shubnikov-de Haas oscillations, and the quantum Hall effect.


Strong magnetic fields at room temperature: parallel conduction channels and the mobility spectrum.


Vertical transport devices: the transfer matrix treatment of resonant tunnel diodes.

 

Methods of obtaining physical and structural information at the nanoscale: X-ray diffraction of thin films; High-resolution x-ray diffraction; Nanofocused x-ray beams at synchrotron light sources; Raman and micro-Raman spectroscopy in semiconductors; Tip-enhanced Raman spectroscopy; Micro-photoluminescence.


Prerequisiti

The student will benefit from having already completed some courses in solid-state physics, for example Solid State Physics (096033) and Physics of Surfaces (096056).


Modalità di valutazione

The student will be evaluated by oral examination according to the calendar of the course.

The student will be expected to discuss the physical phenomena which give rise to certain results or experimental effects, and what information regarding the characterization of the sample or device under test can be extracted from the experimental results. Emphasis is placed on the comprehension of real experimental data rather than calculation of simplified systems or reproduction of text-book derivations.

 


Bibliografia
Risorsa bibliografica facoltativaJ. H. Davies, The Physics of Low-Dimensional Semiconductors, Editore: Cambridge University Press, Anno edizione: 1998
Risorsa bibliografica facoltativaNeil W. Ashcroft and N. David Mermin, Solid State Physics, Editore: Thomson Learning

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
32:30
48:45
Esercitazione
17:30
26:15
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT
24/02/2021