Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2018/2019
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 052545 - PHOTONICS [I.C.]
Docente Nisoli Mauro , Valentini Gianluca
Cfu 10.00 Tipo insegnamento Corso Integrato
Didattica innovativa L'insegnamento prevede  1.0  CFU erogati con Didattica Innovativa come segue:
  • Blended Learning & Flipped Classroom

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA*AZZZZ052545 - PHOTONICS [I.C.]

Obiettivi dell'insegnamento

The course is intended to provide students with the fundamentals to understand the emission and the detection of optical radiation. The physical principles of light matter interaction and their applications in the most important photonic devices will be extensively treated.


Risultati di apprendimento attesi

Lectures and exercise sessions will allow students to:

  • know and understand the physical processes at the heart of photonics devices
  • transfer the physical concepts to applications requiring the generation and detection of optical radiation 
  • gain the capability of modeling photonics devices and their behaviour in engineering systems
  • develop the expertise to design photonics based applications and systems exploiting the knowlegde acquired in the course


Argomenti trattati

1. Photophysics of semiconductors

Elements of quantum mechanics.

Light-matter interaction: semiclassical theory.

Interaction of an electromagnetic field with a semiconductor.

Time-dependent perturbation theory.

Density matrix formalism.

Bulk semiconductors and Quantum Wells: density of states, selection rules, absorption and gain coefficients.


2. Semiconductor Lasers

Quantum Well Lasers

Distributed Feedback Lasers (DFB)

Vertical Cavity Surface Emitting Laser (VCSEL)

Quantum Cascade Lasers


3. Incoherent emitters

Inorganic Light Emitting Diodes (LED)

Organic Light Emitting Diodes (OLED)


4. Introduction to Radiometry

Definition of radiometric quantities

Theorem of conservation of radiance

Lambertian sources

Radiance and irradiance of one optical image

Basic principles of photometry


5. Radiation detectors

Thermal detectors

Junction detectors (p-n and p-i-n photodiode, avalanche photodiode)

Photoconductive detectors

Charged-Coupled Devices (CCD) and CMOS

Noise in detectors


6. Introduction to quantum optics

Quantization of a single-mode field

Single mode quantum optics:

- the number states and the coherent states

Vacuum fluctuations and zero-point energy


Students are required to know the principles of Electromagnetism, Optics and Quantum mechanics. A solid mathematical background on calculus, ordinary and partial differential equations is required.

Modalità di valutazione

The assessment will be based on a written exam consisting of four questions. To pass the exam students are required to demonstrate the knowledge of the topics of course and the capibility to face problems dealing with generation and detection of light. Texts of previous examinations are available on the course website. An oral exam can be requested by students or teachers to complete the evaluation process.


Risorsa bibliografica obbligatoriaMauro Nisoli, Semiconductor Photonics. Principles and Applications, Editore: Societ  Editrice Esculapio, Anno edizione: 2016, ISBN: 978-88-9385-002-5
Risorsa bibliografica facoltativaGianluca Valentini, Notes on Photonics

The notes of the teacher can be dowloaded from the BeeP website

Risorsa bibliografica facoltativaRobert W. Boyd, Radiometry and the Detection of Optical radiation, Editore: John Wiley & Sons
Risorsa bibliografica facoltativaFrank L. Pedrotti, Leno M. Pedrotti, Leno S. Pedrotti, Introduction to Optics, Editore: Cambridge University Press
Risorsa bibliografica facoltativaJohn Wilson, John Hawkes, Optoelectronics - an introduction, Editore: Prentice Hall
Risorsa bibliografica facoltativaDavid W. Greve, Field Effect Devices and Applications, Editore: Prentice Hall
Risorsa bibliografica facoltativaRodney Loudon, The Quantum Theory of Light, Editore: Oxford Science Publications

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
Ore di studio autonome
Laboratorio Informatico
Laboratorio Sperimentale
Laboratorio Di Progetto
Totale 100:00 150:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT