logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2018/2019
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 094788 - GEOPHYSICAL AND RADAR IMAGING
  • 094787 - RADAR IMAGING
Docente Tebaldini Stefano
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (474) TELECOMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI*AZZZZ094790 - RADAR IMAGING
094788 - GEOPHYSICAL AND RADAR IMAGING
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ094790 - RADAR IMAGING

Obiettivi dell'insegnamento

Radar imaging is used for mapping the Earth surface from above. Applications include land-use characterization, forestry, topographic mapping, hazard monitoring, measurement of surface deformation (e.g.: earthquakes, landslides, land subsidence), ice drift velocity. The course will present the basics of passive and active electromagnetic remote sensing, and will introduce students to the use of radiometers, hyperspectral and optical systems. Radar systems will be treated in detail, considering ground, airborne, and spaceborne systems for Earth Observation.

The course is complemented with field lessons, computer lab sessions and presentation of case studies.


Risultati di apprendimento attesi

Dublin Descriptors

Expected learning outcomes

1 - Knowledge and understanding

Students will gain clear understanding about:

  • the physics behind electromagnetic remote sensing technologies
  • signal processing methods for the treatment of electromagnetic remote sensing data

2 - Applying knowledge and understanding

Students will be able to:

  • Design a  Radar survey
  • Define a data processing flow chart for processing Radar data.
  • Simulate electromagnetic acquisitions using Matlab
  • Implement algorithms to process Radar data using Matlab

3 - Making judgements

Students will be able to:

·         Understand the principles that govern the design of Radar remote sensing systems

·         Identify pros and cons associated with use of different remote sensing technologies and data processing algorithms

·         Recognize the design space and its degrees of freedom that can be exploited to define new technologies

4 - Communication

Students will learn to:

·         Write a technical document on a specific case study (e.g.: design and implementation of a remote sensing survey, algorithm development, system analysis, etc.)

5-Lifelong learning skills

 


Argomenti trattati

Introduction to remote sensing: Black body radiation: power spectrum, Plank, Wien, Boltzmann laws and applications. Radiance, brilliance and reflectance: Kirchhoff law. Coherent and un-coherent imaging: smart antennas and arrays, speckle.

Sensors and applications: from IR to visible: Radiometers, multi-band spectrometers, optical and laser images Remote sensing systems, from drones to satellites: acquisition, scanning, calibration, geocoding, detection, image generation and quality evaluation. Applications: vegetation, spectral signatures, principal component analysis. stereoscopy and digital elevation models. Introduction to GIS tools. 

RADAR imaging: basics of EM propagation in the presence of isolated targets and continuous media; Wave polarization; Principles of Radar imaging and Diffraction tomography. Localization and ranging in 1D, 2D, and 3D. Resolution and ambiguities. Pulses (chirp). RADAR cross section and RADAR equation. Thermal noise in RADAR systems. Synthetic Aperture RADAR: geometric distortions, acquisition & focusing.  SAR Interferometry: phase unwrapping and noise source (coherence maps).

RADAR-based Earth Observation: Techniques; SAR imaging, SAR Polarimetry (PolSAR), SAR Interferometry (InSAR), and SAR Tomography (TomoSAR). Applications: target classification, identification of moving targets, land-use classification and parameter extraction, topographic mapping, hazard monitoring (landslides, ground subsidence, building structural health), vertical profiling of natural media (ice sheets & glaciers, snow, and forest), mapping of forest height and biomass.


Prerequisiti

Introductory courses in signal processing and mathematics.


Modalità di valutazione

Oral exam with analysis and discussion of a case or project. The presentation can be given in italian or in english.


Bibliografia
Risorsa bibliografica obbligatoriaAndrea Monti-Guarnieri, Electromagnetic Imaging, Anno edizione: 2015 https://www.dropbox.com/s/zdych7eqn59w4er/appunti_EMI.pdf?dl=0
Risorsa bibliografica facoltativaA. Ferretti, A. Monti Guarnieri, C. Prati, F. Rocca, D. Massonnet, InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, Editore: ESA TM-19

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
32:30
48:45
Esercitazione
17:30
26:15
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT
11/08/2020