logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2018/2019
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 094788 - GEOPHYSICAL AND RADAR IMAGING
Docente Bernasconi Giancarlo , Tebaldini Stefano
Cfu 10.00 Tipo insegnamento Corso Integrato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (474) TELECOMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI*AZZZZ094788 - GEOPHYSICAL AND RADAR IMAGING
094789 - GEOPHYSICAL IMAGING
094790 - RADAR IMAGING
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ094790 - RADAR IMAGING

Obiettivi dell'insegnamento

The Geophysical and Radar Imaging course aims at providing students with a theoretical and practical understanding of remote sensing imaging systems currently used for mapping the Earth surface and subsurface.

Geophysical imaging is used for the remote detection and characterization of targets in the subsurface, producing images of its relevant properties for engineering, environmental, geological applications. The course will present seismic, electrical and electromagnetic investigation methods from the fundamental theory up to data collection and processing.

Radar imaging is used for mapping the Earth surface from above. Applications include land-use characterization, forestry, topographic mapping, hazard monitoring, measurement of surface deformation (e.g.: earthquakes, landslides, land subsidence), ice drift velocity. The course will present the basics of passive and active electromagnetic remote sensing, and will introduce students to the use of radiometers, hyperspectral and optical systems. Radar systems will be treated in detail, considering ground, airborne, and spaceborne systems for Earth Observation.

The course is complemented with field lessons, computer lab sessions and presentation of case studies.


Risultati di apprendimento attesi

Dublin Descriptors

Expected learning outcomes

1 - Knowledge and understanding

Students will gain clear understanding about:

  • the physics behind sonic and electromagnetic remote sensing technologies
  • signal processing methods for the treatment of sonic and electromagnetic remote sensing data

2 - Applying knowledge and understanding

Students will be able to:

  • Design a geophysical / Radar survey
  • Define a data processing flow chart for processing geophysical and Radar data.
  • Use specialized SW to simulate a geophysical “scenario” (e.g. the elastic wave propagation in a layered medium) and to understand “experimentally” the theoretical principles.
  • Simulate electromagnetic acquisitions using Matlab
  • Implement algorithms to process Radar data using Matlab

3 - Making judgements

Students will be able to:

·         Understand the principles that govern the design of geophysical and Radar remote sensing systems

·         Identify pros and cons associated with use of different remote sensing technologies and data processing algorithms

·         Recognize the design space and its degrees of freedom that can be exploited to define new technologies

4 - Communication

Students will learn to:

·         Write a technical document on a specific case study (e.g.: design and implementation of a remote sensing survey, algorithm development, system analysis, etc.)

5 - Lifelong learning skills

 


Argomenti trattati

Geophysical Imaging:

Seismic methods: Elastic properties of rocks, Hooke law, elastic wave equation, Born approximation, diffraction tomography. Refraction and reflection seismic methods: data acquisition and processing. Traveltime tomography. Examples of application and analysis of case histories.

Electrical and electromagnetic methods: Electrical properties of the rocks. Electromagnetic wave propagation in low loss media. Conduction and displacement currents. Electrical prospecting: data acquisition and inversion. Resistivity method, self-potential method, induced polarization method. Electromagnetic prospecting: data  acquistion and interpretation. Conductivity meter, metal detector, VLF-EM method, AFMAG method, magnetotelluric method. Ground Penetrating Radar: data acquisition and processing. Examples of application and analysis of case histories.

Principles of rock physics: Physical properties of porous rocks and geophysical measurements: constitutive equations, rock properties estimation and observability.

Integrated applications of geophysical methods: Cooperative inversion, joint inversion.

 

Radar Imaging:

Introduction to remote sensing: Black body radiation: power spectrum, Plank and Wien laws. Radiance, brilliance and reflectance: Kirchhoff law. Solar radiation and antennas. Speckle, radiometric and geometric resolution.

Sensors and applications: from IR to visible: Radiometers, multi-band spectrometers, and optical images: principles, systems (Landsat, Ikonos, Geoeye). From acquisition to imaging: calibration, geocoding, detection and performance evaluation. Applications: vegetation, spectral signatures, principal component analysis. stereoscopy and digital elevation models. Introduction to GIS tools. 

RADAR imaging: basics of EM propagation in the presence of isolated targets and continuous media; Wave polarization; Principles of Radar imaging and Diffraction tomography. Localization and ranging in 1D, 2D, and 3D. Resolution and ambiguities. Smart antennas: real and synthetic arrays. Pulses (chirp). RADAR cross section and RADAR equation. Thermal noise in RADAR systems. Synthetic Aperture RADAR: geometric distortions, acquisition & focusing.  SAR Interferometry: phase unwrapping and noise source (coherence maps).

RADAR-based Earth Observation: Techniques; SAR imaging, SAR Polarimetry (PolSAR), SAR Interferometry (InSAR), and SAR Tomography (TomoSAR). Applications: target classification, identification of moving targets, land-use classification and parameter extraction, topographic mapping, hazard monitoring (landslides, ground subsidence, building structural health), vertical profiling of natural media (ice sheets & glaciers, snow, and forest), mapping of forest height and biomass.




Prerequisiti

Introductory courses in signal processing and mathematics.


Modalità di valutazione

Oral exam and discussion of homeworks / project. The presentation can be given in italian or in english.

 


Bibliografia
Risorsa bibliografica facoltativaReynolds J.M., An Introduction to Applied and Environmental Geophysics, Editore: John Wiley & Sons
Note:

geophysical imaging

Risorsa bibliografica facoltativaA. Ferretti, A. Monti Guarnieri, C. Prati, F. Rocca, D. Massonnet, InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, Editore: ESA TM-19 http://home.deib.polimi.it/monti/ftp/srl/SAR_I.pdf
Note:

Radar Imaging

Risorsa bibliografica obbligatoriaAndrea Monti-Guarnieri, Electromagnetic Imaging http://home.deib.polimi.it/monti/ftp/srl/SAR_I.pdf
Note:

Radar Imaging


Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
65:00
97:30
Esercitazione
35:00
52:30
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 100:00 150:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.1 / 1.6.1
Area Servizi ICT
26/01/2020