logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2015/2016
Tipo incarico Dottorato
Insegnamento 098954 - FINITE ELEMENT IN ENGINEERING DESIGN
Docente Guagliano Mario
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Dottorato Da (compreso) A (escluso) Insegnamento
MI (1383) - INGEGNERIA MECCANICA / MECHANICAL ENGINEERINGAZZZZ098954 - FINITE ELEMENT IN ENGINEERING DESIGN

Programma dettagliato e risultati di apprendimento attesi

COURSE OBJECTIVES
Upon completion of the course, the students will be able to:

• Develop comprehensive understanding of the fundamentals of the finite element method
• Develop the skills needed to build FEM models of physical problems and apply appropriate boundary conditions and the applied loads
• Implement the method in a finite element program
• Develop the appropriate knowledge of how commercial codes function
• Develop critical thinking in interpreting results from FEM analysis
• Avoid FE pitfalls, ensure accuracy and convergence


COURSE CONTENT AND SCHEDULE

7 June, 2016

Role of finite element in design
• Variational principles
• Minimum total potential Energy, and
• Weighted residual Methods • Introduction to course & design project assignment
• Euler-Lagrange; Rayleigh-Ritz; Galerkin and Collocation methods
• Solved examples

8 June, 2016

Fundamentals of finite element method
• Generalised concepts to determine element stiffness matrix generation
• Development of element stiffness matrix for bar elements • Equilibrium; Total potential energy & discretization
• Use of variational principle and weighted residual to determine element stiffness
• Solved Examples

9 June, 2016

Development of element stiffness matrix for truss elements
• Development of element stiffness matrix for truss and beam elements
• Consistent Loading
• Gauss Integration and Gauss Quadrature • Examine different types of truss elements in solved examples
• Examine different types of beam elements in solved examples

10 June, 2016

Development of 2D plane and axisymmetric element stiffness matrices
• Isoparametric transformation
• Jacobian matrix
• Development of 3D element stiffness matrix • Importance of Jacobian matrix
• Numerical integration using Gaussian Quadrature
• Reduced Integration

13 June, 2016

• Applied Finite Element
• Finite element programming & commercial codes
• Accuracy and limitations of method

Final Exam To Be Arranged Duration 3 hours
Daily lectures: 9:00AM-12:00 PM and 1:00-3:00 PM with 10 minutes break. Students will have access to power point presentations detailing all concepts.
Highly interactive and easy to follow with students participating in questions and answers.

 

ADDITIONAL COURSE REQUIREMENTS AND SKILLS
1) Finite Element Projects: Students are expected to develop a simple FE code during this course showing: (a) Pre-processing (Synthesis and Discretization), (b) Programming using triangular/quadratic element, (c) Element type, size and density, (d) Convergence, and (c) Post-Processing (Results).
2) Project Work Using Commercial Codes: Students will be asked to use a commercial code and apply it to a real design problem. The purpose is to enable students not only to synthesise real engineering problems but also to develop critical thinking skills in FEM.
3) Final Reports: Students will asked to submit two reports not exceeding FIVE pages each containing all aspects of FE project.

 

COURSE REQUISITE
Students must have a solid background in fundamentals of engineering sciences, theory of elasticity, solid mechanics, differential equations and numerical analysis


TEACHING MATERIAL
Extensive and detailed power point presentations will be made available in advance of lectures, Tutorial Questions and Past Examinations. Recommended Textbooks:

Rao, S.S.,The Finite Element Method in Engineering, Pergamon Press.
Zienkiewicz, O. and Morgan, K., Finite Elements and Approximation, John Wiley & Sons.
Meguid, S.A., Integrated Computer-Aided Design of Mechanical Systems, Elsevier Applied Science Publishers.
Bathe, K. and Wilson, E., Numerical Methods in Finite Element Analysis, Prentice Hall
Among others.

COURSE SECRETARIAT
Mrs Licia Simonelli, licia.simonelli@mecc.polimi.it, Tel: 0223998212


Note Sulla Modalità di valutazione

LEARING EVALUATION
The grading of the course is contained in four components: Final examination (40%), Midterm Test (10%), FE Code Development (25%), and Application of Commercial Code to a Design Project(s) (25%).


Intervallo di svolgimento dell'attività didattica
Data inizio
Data termine

Calendario testuale dell'attività didattica
 

Bibliografia
Risorsa bibliografica facoltativaRao, S.S., The Finite Element Method in Engineering, Editore: Pergamon Press
Risorsa bibliografica facoltativaZienkiewicz, O. and Morgan, K., Finite Elements and Approximation, Editore: John Wiley & Sons
Risorsa bibliografica facoltativaMeguid, S.A., Integrated Computer-Aided Design of Mechanical Systems, Editore: Elsevier Applied Science Publishers
Risorsa bibliografica facoltativaBathe, K. and Wilson, E, Numerical Methods in Finite Element Analysis, Editore: Prentice Hall

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
18.0
esercitazione
9.0
laboratorio informatico
3.0
laboratorio sperimentale
0.0
progetto
3.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese

Note Docente
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT
24/10/2020