logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2014/2015
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 096620 - PHOTONICS II [I.C.]
Docente Cerullo Giulio Nicola , Pifferi Antonio Giovanni
Cfu 10.00 Tipo insegnamento Corso Integrato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (402) INGEGNERIA FISICA* AZZZZ096621 - PHYSICS OF ULTRA FAST PROCESSES
096620 - PHOTONICS II [I.C.]
096622 - NANOSCOPY AND OPTICAL TOMOGRAPHY
Ing Ind - Inf (Mag.)(ord. 270) - MI (426) MATERIALS ENGINEERING AND NANOTECHNOLOGY* AZZZZ096621 - PHYSICS OF ULTRA FAST PROCESSES
Ing Ind - Inf (Mag.)(ord. 270) - MI (491) MATERIALS ENGINEERING AND NANOTECHNOLOGY - INGEGNERIA DEI MATERIALI E DELLE NANOTECNOLOGIE* AZZZZ096621 - PHYSICS OF ULTRA FAST PROCESSES

Programma dettagliato e risultati di apprendimento attesi

Photonics II [1]

Goals

To provide the basic knowledge necessary for the understanding of the ultrashort light pulse generation mechanisms, their propagation in linear and nonlinear media, their characterization techniques.

To give examples of application of ultrashort pulses to the study of dynamical processes in physics, chemistry and biology.

 

Detailed Program

1.   Properties of ultrashort laser pulses

  • introduction to ultrafast optics;
  • linear propagation equation for ultrashort pulses; dispersion and techniques for its compensation;
  • nonlinear ultrashort pulse propagation in second order media; three-fields coupled equations; second harmonic generation, sum and difference frequency generation;
  • nonlinear ultrashort pulse propagation in third order media; Kerr effect, nonlinear Schrödinger equation, solitons, self-phase-modulation;
  • ultrashort pulse characterization techniques: non-collinear and interferometric autocorrelation, FROG, SPIDER

2.   Ultrashort pulse generation techniques

  • mode-locked lasers and passive mode-locking techniques;
  • ultrashort pulse amplification, chirped pulse amplification technique;
  • optical parametric amplifiers;
  • carrier-envelope phase and frequency combs

3.   Applications of ultrashort pulses

  • introduction to ultrafast spectroscopy techniques;
  • degenerate, two-colour and broadband pump-probe;
  • density matrix formalism for the decscription of light-matter interaction;
  • four-wave mixing and photon echo;
  • ultrafast processes in metals and semiconductors;
  • introduction to femtochemistry and femtobiology.

 

Laboratory activities

There will be a laboratory session using advanced research instrumentation developed in the Physics Department.

 

Prerequisites

The course requires basic knowledge of the foundations of classical electromagnetism, quantum electronics (light-matter interaction, principles of lasers) and quantum mechanics. 

 

Recommended literature

Andrew M. WeinerUltrafast Optics, Editore: Wiley, Anno edizione: 2009, ISBN: 978-0-471-41539-8

 

 

Photonics II [2]

Objectives

Deepen your knowledge of new techniques for optical imaging from the micro/nano-scale to the macroscopic level, understanding the physical basis, discussing instrumental implementations and presenting examples of applications. The project session will improve the experimental, modelling, team working and soft-skill competences required in research activity.

Program

1. Diffuse Optical Tomography

  • Brief overview on diffuse optics, time-resolved techniques, frequency-resolved techniques

  • Theoretical models of photon migration

  • photon density waves

  • Diffuse Optical Tomography in the linear regime under Born approximation

  • Reconstruction under non-linear regime

  • Applications and new perspectives

2. Nanoscopy

  • Recalls on far-field microscopy techniques, spatial resolution.

  • diffraction limit is overcome by saturable transitions (RESOLFT): physical principles.

  • possible implementations: STED, GSD, SPEM

  • stochastic methods for optical nanoscopy: physical principles.

  • possible implementations: PALM, STORM

  • compare RESOLFT techniques and stochastic techniques

  • Examples of application for optical nanoscopy

 

Project

There will be a project activity involving all students divided into groups. This activity foresee a laboratory session on advanced research instrumentation developed at the Department of Physics followed by a modelling and analysis session based on Matlab.

 

 

 


Note Sulla Modalità di valutazione
 

Bibliografia
Risorsa bibliografica obbligatoriaAndrew M. Weiner, Ultrafast Optics, Editore: Wiley, Anno edizione: 2009, ISBN: 978-0-471-41539-8

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
68.0
esercitazione
24.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
schedaincarico v. 1.6.1 / 1.6.1
Area Servizi ICT
28/02/2020