logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2023/2024
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 096236 - MECHANICS OF BIOLOGICAL STRUCTURES
Docente Vena Pasquale
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA*AZZZZ096236 - MECHANICS OF BIOLOGICAL STRUCTURES
Ing Ind - Inf (Mag.)(ord. 270) - MI (491) MATERIALS ENGINEERING AND NANOTECHNOLOGY - INGEGNERIA DEI MATERIALI E DELLE NANOTECNOLOGIE*AZZZZ096236 - MECHANICS OF BIOLOGICAL STRUCTURES
Ing Ind - Inf (Mag.)(ord. 270) - MI (505) MATERIALS ENGINEERING AND NANOTECHNOLOGY - INGEGNERIA DEI MATERIALI E DELLE NANOTECNOLOGIE*AZZZZ096236 - MECHANICS OF BIOLOGICAL STRUCTURES

Collaborative class

Ateneo estero Docente Ateneo estero Tipo di organizzazione CFU svolti in collaborazione
RUFFONI DAVIDE Ateneo estero viene ospitato 1.0
Le Collaborative Classes costituiscono un modello innovativo di insegnamento curriculare e di apprendimento che prevede la collaborazione on line di un docente del Politecnico di Milano e di un docente di un'università estera, accompagnati dalle rispettive classi.

Obiettivi dell'insegnamento

The purpose of this course is to provide the students with an approach to the tissue mechanics aimed at obtaining the relationship between function-property-microstructure. On the basis of the experimental observations of the mechanical response of the tissues, predictive models allowing for the knowledge of the constituents properties are formulated.


Risultati di apprendimento attesi

The students will learn the modeling approach for the basic mechanical response of biological tissues with reference to both soft and hard tissues (DD1). Furthermore, the students will learn how to formulate and solve simple boundary value problems in which specific biological structures are subjected to loads: governing equations, boundary conditions and solution strategies (DD3). The students will learn how to critically discuss the results of the boundary value problems with specific reference to the physiological and pathological conditions of the tissues (DD3).


Argomenti trattati

The lectures will follow a logical sequence on the basis of the modeling approaches. In particular, hard tissues like bone and soft tissues like arteries and ligaments will be selected as representative examples.

 

Cortical bone:

anisotropy of hard tissues: modeling material symmetries;

bone tissue as a composite material;

property-structure relationship at nano- and microscopic level;

brief introduction to homogenization methods for heterogeneous materials.

Trabecular bone tissue:

brief introduction to mechanical behaviour of cellular solids; simple mechanical models for elastic and post-elastic response of trabecular bone;

soft tissues: (vascular walls, tendons and ligaments, cartilage)

            Brief description of tissue composition;

            Kinetics and kinematics of tissues subjected to large deformations;

            Constitutive relationships for isotropic and anisotropic tissue reponse;

            Simple boundary value problems with specific reference to tissues;

            Modeling of time dependent response of tissues: viscoelasticity;

            Mechanics of cartilage: cartilage poroelasticity.

 In addition to theoretical lectures, exericises on selected boundary value problems will be solved. Furthemore, practical lectures in which application of the finite element method to specific tissue mechanics problems will be given.

In this course, a "collaborative class" with the University of Liegi will be active. In this initiatives, students may take part to working group with students from the university of Liegi with the purpose to develop joint projects that will be object of the final exam. Project description and specific tutorials will be given during the course. 


Obiettivi di sviluppo sostenibile - SDGs
Questo insegnamento contribuisce al raggiungimento dei seguenti Obiettivi di Sviluppo Sostenibile dell'Agenda ONU 2030:
  • SDG3 - GOOD HEALTH AND WELLBEING

The course aims at describing the relationship between tissue structure/composition and its property. These relationships are used to create models able to simulate physiologic and pathologic conditions of tissues in the muscoloskeletal system and in the cardiovascula system. Reliable models are the base for development of methods for early diagnosis of pathologies. Furthermore, biomaterial mechanics is also a topic of interest in this course. The role of microstructural architecture of devices like bone scaffolds are here discussed. These methods are keypoints for the development of innovative optimized design of Bone tissue engineering device for critical bone defects repair. The ultimate goal and clinical impact of these methods are the improvement of life quality and shortening of clinical tratments especially in the post-surgery phase. 

 


Prerequisiti

 Basic solid mechanics, biomechanics


Modalità di valutazione

The student may chose one of the three examination modes as follows:

1. Oral exam;

2. Internal project

3. collaborative class project

____

1. ORAL EXAM

In the Oral examination the students should show:

- their capability to clearly describe the theoretical approaches to the mechanics of biological tissues;

- their capability to write governing equations for a specific problem with non linear anisotropic material properties (examples are: uniaxial tension of non linear materials like soft biological tissues; biaxial stretching, inflation of soft tubes, inflation of arteries ...);

- their capability to solve the above mentioned problems.

2. INTERNAL PROJECT

The students may create working groups (max 2 students) to carry out a project (assigned in agreement with the students). The project will consist in the development of an original numerical model on a specific tissue/biomaterial mechanics problem. Finite elements or other numerical methods are available. Tutorial and assistance to the project development will be provided. The project will be summarized in a final presentation in which motivation, objectives, materials and methods, results and accurate discussion will be described.

3. COLLABORATIVE CLASS PROJECT

This examination mode is similar to mode#2 with the exception that working groups will be composed of students from POLIMI and students from the Univeristy of Liegi (2 students from polimi and 1 student from U-Liegi per group). Topics will be jointly agreed with the Professor at U-Liegi and POLIMI. Asssistance from both sides will be provided. 

 


Bibliografia
Risorsa bibliografica obbligatoriaS. Cowin, S. Doty, Tissue Mechanics, Editore: Springer
Risorsa bibliografica obbligatoriaPasquale Vena, Lecture Notes

Software utilizzato
Nessun software richiesto

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
30:00
45:00
Esercitazione
15:00
22:30
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
5:00
7:30
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.8.3 / 1.8.3
Area Servizi ICT
02/03/2024