Programma dettagliato e risultati di apprendimento attesi
The main goal of the course is to develop a first knowledge of the variational approach to stochastic PDEs.
The first part of the course is devoted to the development of a general theory of stochastic analysis in infinite dimensions: this will cover, in particular, Gaussian measures in Hilbert spaces, stochastic processes and martingales in Hilbert spaces, quadratic variation and tensor quadratic variation, measurability of stochastic processes, stochastic compactness methods, stochastic integration with respect to a square-integrable continuous martingale, Wiener processes and cylindrical Wiener processes, maximal inequalities for square integrable martingales, Burkholder-Davis-Gundy inequality, Itô formula.
The second part of the course covers applications of such tools to the variational theory of stochastic PDEs: existence/uniqueness results for SPDEs with Lipschitz nonlinearities, existence/uniqueness results for SPDEs of monotone type in Hilbert triplets.
Eventually, selected examples of stochastic partial differential equations will be discussed, with focus on the state of the art and possible open problems: these will mainly cover phase-field-type SPDEs such as stochastic Allen-Cahn and stochastic Cahn-Hilliard equations.
Prerequistes: Real and Functional Analysis, Probability.
Note Sulla Modalità di valutazione
Oral presentation of either a selected subject or a simple paper in the literature.
Intervallo di svolgimento dell'attività didattica
Data inizio
Data termine
Calendario testuale dell'attività didattica
Detailed schedule:
- 20/02/2023: from 9:30 to 12:30, Aula seminari III piano, Dipartimento di Matematica, Edificio 14
- 27/02/2023: from 9:30 to 12:30, Aula 21.5.2
- 06/03/2023: from 9:30 to 12:30, Aula 25.1.1
- 13/03/2023: from 9:30 to 12:30, Aula 25.1.1
- 20/03/2023: from 9:30 to 12:30, Aula 21.6.5
- 27/03/2023: from 9:30 to 12:30, Aula 21.6.5
- 03/04/2023: from 9:30 to 12:30, Aula 21.5.2
- 12/04/2023: from 14:30 to 17:30, Aula 9.0.2
- 17/04/2023: from 9:30 to 12:30, Aula 21.5.2
Bibliografia
Wei Liu, Michael Röckner, Stochastic Partial Differential Equations: An Introduction, Editore: Springer Cham, ISBN: 978-3-319-22353-7
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions, Editore: Cambridge University Press, Anno edizione: 2014, ISBN: 9781107295513
Luca Scarpa, Ulisse Stefanelli, Stochastic Partial Differential Equationshttps://webeep.polimi.it/login/index.php Note:
Working file for lecture notes of the course on "Stochastic PDEs" (University of Vienna, 2021)
Software utilizzato
Nessun software richiesto
Mix Forme Didattiche
Tipo Forma Didattica
Ore didattiche
lezione
27.0
esercitazione
0.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0
Informazioni in lingua inglese a supporto dell'internazionalizzazione