Risorse bibliografiche
 Risorsa bibliografica obbligatoria Risorsa bibliografica facoltativa
 Scheda Riassuntiva
 Anno Accademico 2020/2021 Scuola Scuola di Ingegneria Civile, Ambientale e Territoriale Insegnamento 056258 - GEOTECHNICAL MODELLING 056256 - GEOTECHNICAL MODELLING [1ST MOD] Docente Della Vecchia Gabriele Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing - Civ (Mag.)(ord. 270) - MI (488) INGEGNERIA CIVILE - CIVIL ENGINEERING*AZZZZ056258 - GEOTECHNICAL MODELLING
052333 - GEOTECHNICAL MODELLING
056203 - GEOTECHNICAL MODELLING 2ND
055764 - ELEMENTS OF GEOTECHNICAL MODELLING

 Obiettivi dell'insegnamento
 The course focuses on the principles and the analytical and numerical tools needed to model the behaviour of soils and the response of geotechnical systems under time dependent loads, for engineering applications. Hydro-mechanical, thermo-mechanical and chemo-mechanical coupling are addressed. The role of non-linearity, initial state, and previous stress history is emphasised. Physical modelling is introduced as a complementary tool for the analysis.

 Risultati di apprendimento attesi
 The aim of course is to develop understanding on how the physical behaviour of soils can be described in mathematical terms accounting for multiphysics coupling, how simple strain hardening elastic-plastic models for the main categories of soils can be developed and implemented, how an appropriate soil model can be chosen, initialised and calibrated to be used in a numerical analysis,  what is the role of the ratio between the rate of loading and the rate of response of geotechnical systems, and how geotechnical design and assessment can be tackled by a numerical approach in the design and in the assessment. At the end of the module the students will be able to: (i) analyse laboratory data and choose an appropriate model to reproduce the key aspects of the specific soil behaviour; (ii) calibrate and implement a chosen model based on available data; (iii) discern advantages and limitations of specific models to be used in numerical analyses; (iv) properly address initialisation of non-linear models in the analysis of the soil response; (v) evaluate how models can be extended to account for unsaturated and non-isothermal conditions, and different chemical composition of the pore fluid.

 Argomenti trattati
 The contact hours are organised with a combination of lectures and practical sessions. The lectures will introduce the students the main principles of soil modelling, at both the material and the engineering scale. The topics addressed in the module include: Formulation and use of “elastic” models. “True” elasticity and “Pseudo-elasticity”. Linear and non-linear elasticity. Parameter calibration strategies. Formulation and use of perfect plasticity. Strength envelopes in the stress spaces. The role of plastic deformation. Introduction to the plastic potential. General formulation of strain-hardening elastic-plastic models for soils. Examples: Modified Cam Clay, Strain hardening Mohr-Coulomb, Nova and Wood. An introduction to models for natural complex soils Introduction to unsaturated soils: what’s new compared to saturated states? Three phases, “effective” stresses, enhanced role of fabric. Water retention behaviour and hydraulic conductivity of soils under unsaturated conditions. The mechanical response of unsaturated soils: shear strength and compressibility. Introduction to models accounting for unsaturated conditions: BBM and further developments. Introduction to the role of the chemical composition of the pore fluid: what’s new compared to distilled water? Miscible and non-miscible contaminants. The role of the chemical composition of the pore fluid on clay fabric: the double layer theory and its limitations. The role of pore fluid chemistry on hydraulic conductivity, shear strength and compressibility. Introduction to models accounting for different pore fluids in the context of strain hardening elasto-plasticity. Practical sessions include exercises and applications aimed at introducing the students to the implementation of the previous concept in the geotechnical engineering analysis and assessing the comprehension of the main theoretical background concepts. A series of practical sessions is dedicated to introduce the students the numerical code they will use for part of their homework.

 Prerequisiti
 Continuum Mechanics; Soil Mechanics; Basic concepts on the numerical analysis of linear systems.

 Modalità di valutazione
 Assessment of the learning objectives include formative assessment during the course period and evaluation assessment at the end of the course. During the course the students will get a number of group reports to complete as homework. For those groups who will hand in the reports by the deadlines given in due course, a preliminary assessment and feedback will be given, for them to self-evaluate achievement of the learning objectives and improve any insufficient part. Handing in the assignments in due time during the course is highly recommended, though not compulsory. All the home assignment reports must be handed in one week before the chosen examination date, the latest, for the final evaluation purpose. The final evaluation will include the home assignment reports and an oral examination. The written reports will be evaluated for the student capability to bring theoretical knowledge to the solution of practical engineering problems, including the choice of suitable models for different geotechnical applications, the interpretation of the laboratory tests, the choice and the calibration of adequate models for the different soils, the numerical simulation of selected geotechnical systems. The oral examination will start with a discussion on the content of the reports, and aims at assessing achievement of the learning objectives, including the fundamental theory which modelling is built on.

 Bibliografia
 David Muir Wood, Geotechnical Modelling, Editore: Taylor & Francis, Anno edizione: 2004

 Software utilizzato
 Nessun software richiesto

 Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
32:30
48:45
Esercitazione
17:30
26:15
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

 Informazioni in lingua inglese a supporto dell'internazionalizzazione
 Insegnamento erogato in lingua Inglese Disponibilità di materiale didattico/slides in lingua inglese Disponibilità di libri di testo/bibliografia in lingua inglese Possibilità di sostenere l'esame in lingua inglese Disponibilità di supporto didattico in lingua inglese

 Note Docente
 Journal and/or conference papers, as well as course notes on selected topics, will be uploaded on BeeP
 schedaincarico v. 1.7.2 / 1.7.2 Area Servizi ICT 01/07/2022