 Loading... Risorse bibliografiche Risorsa bibliografica obbligatoria Risorsa bibliografica facoltativa
 Scheda Riassuntiva
 Anno Accademico 2020/2021 Scuola Scuola di Ingegneria Industriale e dell'Informazione Insegnamento 095963 - ADVANCED PARTIAL DIFFERENTIAL EQUATIONS Docente Gazzola Filippo Cfu 8.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (487) MATHEMATICAL ENGINEERING - INGEGNERIA MATEMATICA*AZZZZ095963 - ADVANCED PARTIAL DIFFERENTIAL EQUATIONS

 Obiettivi dell'insegnamento
 To present mathematical models and advanced techniques in the theory of partial differential equations, of frequent use in the applied sciences.

 Risultati di apprendimento attesi
 At the end of the course the student is expected: 1. To know the basic theory of Hilbertian Sobolev spaces: density and approximation by smooth functions, traces, compactness, embeddings, Bochner integral. The theory of the Faedo-Galerkin method and its applications. Applications of fixed point theorems. The basic theory of the fundamental differential equations in mathematical physics.  2. To be able to derive the variational formulation of the most common boundary and initial boundary value problems for stationary and evolution PDEs and analyze their well-posedness. Knowledge of some nonlinear equations such as the stationary Navier-Stokes system or semilinear equations. To be able to analyze a physical model and to set up the related partial differential equation.

 Argomenti trattati
 1. Sobolev spaces. Definitions of the Hilbert-type spaces and their duals. Traces. Poincaré inequalities. Embedding theorems. Time dependent Sobolev spaces, the Bochner integral. 2. Elliptic equations. Variational formulation of the most common boundary value problems for equations in divergence form. Lax-Milgram Theorem and analysis of the well posedness. Maximum principles, positivity preserving. Hilbert triples. Eigenvalues and eigenfunctions. The Stokes system, equilibrium of a plate. Nonlinear equations: steady Navier-Stokes equations, semilinear elliptic equations, critical point theory. 3. Evolution equations. First order quasilinear equations: characteristic lines and shocks. Abstract second order evolution problems: existence, uniqueness, stability for abstract equations. Parabolic equations: weak formulation of the most common initial-boundary value problems. Weak maximum principles. Wave equation: weak formulation of the most common initial-boundary value problems. The Faedo-Galerkin method and analysis of the well posedness. Energy methods and applications to semilinear parabolic and hyperbolic problems. 4. Fixed point techniques. The contraction Theorem and applications. 5. Optimization and calculus of variations. Minimization of functionals in Banach and Hilbert spaces. Variational inequalities and optimality conditions. Convexity and semicontinuity. Projections. The Euler-Lagrange equation.

 Prerequisiti
 Basic knowledge of the most common equations of mathematical Physics: Heat and Laplace equation (separation of variables, maximum principles, fundamental solution). Wave equation (d'Alembert, Kirchhoff formulas). Basic calculus with Distributions. Lebesgue integration and spaces of p-summable functions. Banach and Hilbert spaces. Riesz Representation and Lax-Milgram Theorems. Fourier series. Weak convergence. Banach-Alaoglu Theorem.

 Modalità di valutazione
 Written examination: the student is required to solve boundary value problems, initial-boundary value problems, to set up variational formulations, to solve problems through enrgy methods. Highly insufficient grades (<13/30) in the written examination are not allowed to take part at the oral discussion. Oral discussion: it is on the whole program, the student must be able to explain the main concepts and prove the main results with property of language.

 Bibliografia A. Ferrero, F. Gazzola, M. Zanotti, Elements of advanced mathematical analysis for physics and engineering}, , Editore: Ed. Esculapio, Anno edizione: 2013 F. Gazzola, F. Tomarelli, M. Zanotti, Analytic Functions, Integral Transforms, Differential Equations, Editore: Ed. Esculapio, Anno edizione: 2020 F. Gazzola, H.C. Grunau, G. Sweers, Polyharmonic boundary value problems, Editore: LNM 1991, Springer, Anno edizione: 2010 http://www1.mate.polimi.it/~gazzola/book_GGS.pdfNote:downladable for free Notes from prof. GazzolaNote:Complements to some parts of the program

 Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
48:00
72:00
Esercitazione
32:00
48:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 80:00 120:00

 Informazioni in lingua inglese a supporto dell'internazionalizzazione
 Insegnamento erogato in lingua Inglese Disponibilità di materiale didattico/slides in lingua inglese Disponibilità di libri di testo/bibliografia in lingua inglese Possibilità di sostenere l'esame in lingua inglese Disponibilità di supporto didattico in lingua inglese
 schedaincarico v. 1.6.5 / 1.6.5 Area Servizi ICT 20/06/2021