logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2020/2021
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 052470 - QUANTUM COMMUNICATIONS
Docente Martelli Paolo
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (474) TELECOMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI*AZZZZ052470 - QUANTUM COMMUNICATIONS
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ052470 - QUANTUM COMMUNICATIONS
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA*AZZZZ052470 - QUANTUM COMMUNICATIONS
Ing Ind - Inf (Mag.)(ord. 270) - MI (487) MATHEMATICAL ENGINEERING - INGEGNERIA MATEMATICA*AZZZZ052470 - QUANTUM COMMUNICATIONS

Obiettivi dell'insegnamento

Aim of Quantum Communications is to give to the students the basic knowledge of the principles of Quantum Physics and their application to Quantum Information and Communications. The fundamental concept of quantum bit (qubit), together with the main quantum gates, which are the blocks for manipulating qubits and performing quantum computation, will be presented. The possibility of distributing in an unconditionally secure way a string of bits (a symmetric key to be used for cryptography) between two users will be discussed, analyzing some Quantum Key Distribution (QKD) protocols, starting from BB84 (the first QKD protocol) and its practical realization through single photons encoded in polarization. Another application of Quantum Communications, the quantum teleportation, will be shown.  


Risultati di apprendimento attesi

Dublin descriptor 1 (knowledge and understanding). Students will learn the principles of quantum physics and how to use them for the understanding of basic applications of quantum information and communications, like quantum gates, QKD and quantum teleportation.

Dublin descriptor 2 (applying knowledge and understanding). Students will be able to analyze and describe quantum circuits for manipulating qubits as combination of quantum gates and representing them by means of the Bloch sphere. Students will acquire the capability of designing QKD systems.

Dublin descriptor 5 (lifelong learning skills). Students will acquire the tools for comprehending the main aspects of present and future applicative developments in the field of quantum information and quantum communications.


Argomenti trattati

INTRODUCTION TO QUANTUM MECHANICS Wave functions, Hamiltonian operator and Schrodinger's equation. Dirac's notation. Superposition of quantum states. Observables and Hermitian operators. Quantum process of measurement and collapse of the quantum state. Complementary observables and uncertainty principle. Density operator, pure and mixed states.

HARMONIC OSCILLATOR Eigenvalues and eigenfunctions of the Hamiltonian for the quantum harmonic oscillator. Creation and annihilation operators. Number (or Fock) states for the harmonic oscillator. Coherent (or minimum uncertainty) states.

QUANTUM REPRESENTATION OF LIGHT AND PHOTONS Quantum representation of the electromagnetic radiation. Concept of photon as elementary quantum of light. Fock and coherent states of light. Interaction between radiation and matter: absorption, spontaneous emission and stimulated emission of photons. Photodetection. Polarization of the light: Jones calculus, Stokes parameters and Poincaré sphere.

QUANTUM INFORMATION AND COMMUNICATION Quantum bits (qubits). Quantum gates and unitary operators. Pauli operators. Bloch sphere. Measurement of qubits. Maximally unbiased bases. Controlled NOT gate. Entanglement. Bell's states. No-cloning theorem. Quantum computation. Quantum cryptography. Quantum teleportation.


Prerequisiti

Basic knowledge of linear algebra and differential calculus.


Modalità di valutazione

The examination will be written, with open questions and exercises on the topics explained during the lectures.

In detail the examination comprises:

- exercises to be solved numerically, in order to assess the expected learning outcomes related to Dublin descriptors 1 and 2;

- questions of theoretical type with open response, in order to assess the expected learning outcomes related to Dublin descriptors 1, 2 and 5.


Bibliografia
Risorsa bibliografica obbligatoriaSlides presented during the lectures, available on BEEP https://beep.metid.polimi.it
Risorsa bibliografica facoltativaP.A.M. Dirac, The Principles of Quantum Mechanics, Editore: Oxford University Press, Anno edizione: 2000
Risorsa bibliografica facoltativaR. Loudon, The Quantum Theory of the Light, Editore: Oxford University Press, Anno edizione: 2000
Risorsa bibliografica facoltativaM. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Editore: Cambridge University Press, Anno edizione: 2000

Software utilizzato
Nessun software richiesto

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
30:00
45:00
Esercitazione
20:00
30:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.7.2 / 1.7.2
Area Servizi ICT
05/07/2022