logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2020/2021
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 054207 - INDUSTRIAL AUTOMATION, COMMUNICATION AND DATA MANAGEMENT
Docente Cesana Matteo
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - BV (479) MANAGEMENT ENGINEERING - INGEGNERIA GESTIONALE*AZZZZ054207 - INDUSTRIAL AUTOMATION, COMMUNICATION AND DATA MANAGEMENT

Obiettivi dell'insegnamento

The goal of this course is to provide the students with a general view of the current methods and tools offered by the Information Technology for the smart factory. The course covers selected topics in the domains of industrial automation, communication, and data management.

 

The course fits into the overall program curriculum pursuing some of the defined general learning goals.In particular, the course contributes the development of the following capabilities:

Understand context, functions, processes in a business and industrial environment and the impact of those factors on business performance

Identify trends, technologies and key methodologies in a specific domain (specialization streams)

Design solutions applying a scientific and engineering approach (Analysis, Learning, Reasoning, and Modeling capability deriving from a solid and rigorous multidisciplinary background) to face problems and opportunities in a business and industrial environment

 


Risultati di apprendimento attesi

At the end of the course, the student is expected to:


-understand the role of Information Technology tools and methods for the smart factory;

-manage the production, exchange and elaboration of data in a factory;

-identify the role of industrial robots in the factory, why and where they should be used in the production systems;

-understand and master the new trends in industrial robotics, like collaborative robotics;

-use software programs to simulate and to offline program the robots;

-understand complex communication technologies for industrial IoT systems;

-identify IoT system components and their relations;

-use prototyping platforms for the IoT;

-recognize the design space and its degrees of freedom that can be exploited to define communication technologies for the IoT;

-identify the phases of Big Data management and analysis;

-perform the quality assessment of the data sources to be used for data analysis;

-understand and use the principles of data source integration;

-identify and apply the most appropriate data analysis techniques among the best known ones.


Argomenti trattati

1. Introduction: the industry 4.0 paradigm. Production, exchange and management of data. The enabling technologies: robotics, internet of things, big data and analytics.

 

2. Industrial automation: current and future scenarios of automation. Process automation: the role of feedback control. Discrete automation: action sequencing. The Programmable Logic Controller. Real time systems.

 

3. Industrial robotics: basic concepts and examples. Selection of a robot based on the application. Elements of robot kinematics, motion planning and control. Tools for robot motion programming.

 

4. Collaborative robotics: advantages in human-robot collaboration. Safety standards. Examples and applications.

 

5. Introduction to Industrial Internet of Things (IIoT): building blocks and components.

 

6. Communication Technologies for IIot: overview of the reference technologies for interconnecting industrial devices and processes (WiFi, industrial Ethernet, ZigBee, ISA 100, WirelessHART, Field BUS, RFID).

 

7. Communication protocols for the IIoT: overview of the reference protocols to provide services in industrial enviornments (OPC UA, MQTT, HTTP and COAP).

 

8. Management Platforms for the IIoT: hands on activities with IoT prototyping platforms (NodeRed) and cloud-based management platforms.

 

9. Introduction to the architectures of modern data management systems.

 

10. Basics of data integration: model heterogeneity, semantic heterogeneity at the schema level, heterogeneity at the data level.

 

11. Dynamic data integration: the use of wrappers, mediators, meta-models, ontologies, , etc.

 

12. Introduction to data analysis and exploration.


Prerequisiti

The students should be aware of the methodologies and main models for the management of data.


Modalità di valutazione

The final assessment will be a written exam, consisting of open-ended questions.

 

In the written exam the student should be able to:
-address a simple control problem with the appropriate tools;
-discuss the kinematics, the motion generation, and the control, of an industrial robot;
-discuss applications where collaborative robotics might be an option in a production process;
-evaluate the performance of communication technologies for the IIoT;
-describe complex network technologies at different levels of detail;
-solve a simple exercise of data integration;
-choose and apply an analysis technique that is appropriate for a specific problem.

 


Bibliografia
Risorsa bibliografica facoltativaB. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control, 3rd Ed., Editore: Springer, Anno edizione: 2009, ISBN: 9781846286414 http://www.springer.com/engineering/robotics/book/978-1-84628-641-4
Risorsa bibliografica facoltativaB. M. Wilamowski, J. D. Irwin, Industrial Communications Systems, 1st Ed., Editore: CRC Press, Anno edizione: 2017, ISBN: 9781138071803
Risorsa bibliografica facoltativaA. Doan, A. Halevy, Z. Ives, Principles of Data Integration, 1st Ed., Editore: Morgan Kaufmann, Anno edizione: 2012
Risorsa bibliografica facoltativaP-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Editore: Addison-Wesley, Anno edizione: 2006, ISBN: 0321321367 http://www-users.cs.umn.edu/~kumar/dmbook/index.php

Software utilizzato
Nessun software richiesto

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
26:00
39:00
Esercitazione
12:00
18:00
Laboratorio Informatico
12:00
18:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.8.3 / 1.8.3
Area Servizi ICT
21/09/2023