logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2020/2021
Scuola Scuola di Ingegneria Civile, Ambientale e Territoriale
Insegnamento 098634 - ADVANCED ENVIRONMENTAL SYSTEMS ANALYSIS [I.C.]
  • 098632 - ADVANCED ENVIRONMENTAL SYSTEMS ANALYSIS [1ST MOD]
Docente Guariso Giorgio
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing - Civ (Mag.)(ord. 270) - MI (489) INGEGNERIA PER L'AMBIENTE E IL TERRITORIO - ENVIRONMENTAL AND LAND PLANNING ENGINEERING*AZZZZ098634 - ADVANCED ENVIRONMENTAL SYSTEMS ANALYSIS [I.C.]
Ing Ind - Inf (Mag.)(ord. 270) - BV (477) ENERGY ENGINEERING - INGEGNERIA ENERGETICA*AZZZZ098634 - ADVANCED ENVIRONMENTAL SYSTEMS ANALYSIS [I.C.]

Obiettivi dell'insegnamento

The course offers a systematic overview of environmental decision-making at different levels. The emphasis is on concepts and tools for modeling environmental systems subject to decisions at the local (Module 1) and global (Module 2) scales.

In particular, Module 1 aims at providing to the students the ability to deal with real-world environmental problems by applying water and air quality models, in different decision contexts. The integrated modelling approach, meaning that dealing with the full DPSIR chain, is also illustrated as a means to deal with multifacetted decisions.

Module 2 offers an in-depth analysis of policy and decision-making under global change (demographic, land-use, energy, and climate changes). The course develops knowledge and skills for modeling these changes across different spatial and temporal scales, quantifying their impacts, assessing the variety of uncertainties associated with future projections, and developing tools to assist decision makers.

Real world examples and numerical applications will be developed as part of the course projects for both modules.


Risultati di apprendimento attesi

The course is intended to train students to:

- deepen their knowledge and understanding of environmental models, providing a basis for originality in developing and/or applying ideas, in real-world local (water and air pollution) and global (demography, land-use, energy, and climate change), contexts;

- apply their knowledge and understanding, meaning to acquire a problem-solving ability to successfully deal with new or unfamiliar environmental problems within a broad and multidisciplinary context;

- develop the ability to integrate knowledge from various environmental and social domains and handle their complexity, formulating judgments with limited and uncertain information;

- communicate their conclusions, and the knowledge and rationale underpinning these, clearly and unambiguously, in both written and oral form;

- have the skills to autonomously continue and broaden their study on the application of environmental modelling tools.


Argomenti trattati

The course is delivered via lectures complemented by practical, computer-based tutorials that contribute to the course assessment.

After a common

Introduction to the course,

The main topics of Module 1 are:

1. Environmental decision making within the DPSIR approach. Environmental planning and management problems at a regional/local level are formulated according to the specific compartment addressed within the EU DPSIR scheme. The role of the model of the environmental system is highlighted.

2. The general transport and dispersion equation.

3. Water quality modelling and planning. Simple BOD-DO models are formulated for a river system, composed of various reaches. The model is then enriched looking at: Hydraulic model and mass balance equations; The dynamics of bacteria and ecological ffod chain; Biological and nutrient compartments. Integrated land and river models and lake models will also be presented. All such models can be used to determine localization and discharge decisions in water bodies. Surrogate modelling is finally introduces as a tool to solve computationally intensive decision-making problems.

4. Air quality modelling and planning. The cases analysed will cover a set of common situations: Non-reactive pollutants in stationary conditions; Climatological models and the role of meteorology; Models of specific situations (coastal, urban canyon); Models for reactive pollutants (Lagrangian, Eulerian, particle chemical transport models). Boundary conditions problems and nesting techniques will be diuscussed. The course will illustrate how to use these models in emission reduction planning and how to join them with health impact models to develop integrated regional plans.

5. CO2 emissions and biomass exploitation. Gaseous emissions also imply the release of CO2 into the atmosphere. It is thus necessary to formulate carbon budget modelling, taking into account its major sinks: biomass and soil. To optimally plan for COcapture and bioenergy production, we examine vegetation dynamics and forest management.

Module 2 continues with:

6. Scenario-based analysis: the traditional top-down approach, from global scenarios to the local scale; demographic projections; climate models and IPCC assessment reports (emission scenarios vs representative concentration pathways); energy models (e.g., WITCH); land-use models (e.g., AQUACROP); downscaling techniques.

7. Scenario-neutral analysis: the alternative bottom-up approach, from local vulnerabilities to global scenarios; sensitivity analysis and synthetic generation of external drivers; stress test and failure boundary.

8. Uncertainty analysis and robust decisions: decisions under risk vs decisions under uncertainty; robustness criteria (e.g., Wald, Hurwicz, Savage, Laplace); optimal sequencing; robustness, flexibility, and adaptive decisions.


Prerequisiti

Basic concepts about dynamical systems (transient, equilibrium, stability), as well as optimization methods (decision variables, objectives, constraints, solution algorithms), are mandatory to understand the course topics. The course projects require basic knowledge of MATLAB and EXCEL.


Modalità di valutazione

The exam comprises:

1) A written test for both Module 1 and 2 on the framing and solving an environmental quality and/or a decision-making problem together with questions related to the topics presented in the lectures, to verify the ability of the students to solve such problems, mainly from a theoretical viewpoint. The written test can be repeated to improve the final evaluation. Only the latest will be considered in the computation of the final mark.  

Additionally, for Module 1, it requires:

2) The solution to a problem with real data using a computer tool to demonstrate the ability to formulate and solve practical cases and clearly present their conclusions in a short written report (25%);

3) A brief presentation to the class of a scientific paper to learn how to read and summarize a study related to an actual application of environmental quality models, in an oral form (15%).

For Module 2:

4) a course project, which requires applying the acquired knowledge to a real-world problem, developing numerical analysis, and presenting the results in the form of a short scientific paper (37%).


Bibliografia

Software utilizzato
Nessun software richiesto

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
30:00
45:00
Esercitazione
20:00
30:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese

Note Docente
schedaincarico v. 1.6.8 / 1.6.8
Area Servizi ICT
04/08/2021