Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2019/2020
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 096061 - MICRO AND NANOOPTICS [C.I.]
  • 096060 - MICRO AND NANOOPTICS [2]
Docente Della Valle Giuseppe
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
054856 - NANO-OPTICS

Obiettivi dell'insegnamento

The Aim of the course is threefold: (i) to introduce the student to the theoretical foundations and main applications of Nanooptics; (ii) to provide the student with a set of advanced tools and methods for the design and quantitative description of optical components and devices at the nanoscale; (iii) to give the student the theoretical basis for the understanding of highly innovative topics in modern Photonics.

Risultati di apprendimento attesi

- Knowledge and understanding (DD1)

  • The student understands the physical basis of the optical phenomena taking place at the nanoscale.
  • The student knows the guidelines for the modeling and design of nanooptical devices.

- Apply knowledge and understanding (DD2)

  • The student is able to retrieve the analytical solution of standard problems in dielectric periodic media, metal based (plasmonic) nanostructures and metamaterials.
  • The student is able to provide a quantitative description of some prototypal optical devices at the nanoscale, with particular attention to the validity limits of the models under consideration.

- Making Judgements (DD3)

  • The student is aware of the key functionalities and challenges in nanooptics.
  • Given a specific optical functionality readily implemented in the market or under development, the student is able to identify the operating principles and evaluate the potential impact of nanooptic technologies in the field.

- Lifelong learning skills (DD5)

  • The student is capable of understanding new trends in the high-tech market (from IT highways, to lab-on-chip and nanomedicine) dealing with advanced photonic structures.
  • The student is capable of autonomously learn the operating principles of novel optical nanodevices.

Argomenti trattati

1. Theoretical Foundations of Nanooptics. Electromagnetism as an eigenvalue problem: electromagnetic harmonic modes, symmetries and classification of harmonic modes. Scaling properties of Maxwell's equations. Wave propagation in homogeneous and inhomogeneous media: angular spectrum representation, TE-TM decomposition, scalar diffraction theories, optical Schroedinger equation.

2. Photonic Crystals. Generalities on periodic lattices. Bloch electromagnetic theorem. Photonic band structure. One-dimensional PCs: periodic layered media, band states and gap states, surface states and bulk defect states. Applications to Bragg reflectors and filters, omnidirectional dielectric mirrors, photonic Bragg fibers. Two-dimensional PCs: a polarization-indepenendent band-gap, point and line defects and application to PC cavities and waveguides, out-of-plane propagation and PC fibers. PC Interfaces: negative refraction and superprism effect.

3. Near-field Optics. Evanescent waves. The diffraction limit to optical imaging. From the far-field to the near-field. Introduction to near-field optical microscopy and applications.

4. Plasmonics. Optical properties of noble metals. Surface Plasmon Polaritons (SPPs): derivation of the SPPs dispersion equation, optical properties of SPPs, excitation and detection of SPPs, plasmon-polaritons in thin metallic films (SR/LR-SPPs). Introduction to plasmonic waveguides. Localized plasmons (LPs): quasistatic theory of localized plasmonic resonances in noble metal nanospheres, optical properties of metallic nanoparticles (resonant polarizability, absorption and scattering cross-sections, field-enhancement, resonance tuning). Introduction to plasmonic nanosensing (SPR and SERS).

5. Metamaterials. Negative dielectric media. Artificial magnetism and materials with negative magnetic permeability (stack of metal cylinders, split ring resonators). Negative refractive index materials (NRM) and the effects of a reversed wave-vector. Surface electromagnetic modes in NRMs and Pendry's Perfect Lens. Experimental evidence of super-lenses with real materials. Introduction to Transformation Optics for the steering of light and cloacking of objects.


No pre-requisites, but the teaching makes use of the basic concepts of Optics and Electromagnetism.

Modalità di valutazione

Written examination, optionally followed by an oral examination. The written exam consists of open questions (typically 2 questions to be solved in 1 hour and 45 minutes), aimed at ascertaining:

  • the understanding of the physical basis of the optical phenomena at the nanoscale;
  • the knowledge of the definitions, theorems and general concepts dealing with optical nanomaterials, including photonic crystals, plasmonic nanostructures and metamaterials;
  • the capability to discuss, both qualitatively and quantitatively, the performance of prototypal nanooptical devices as a function of their key parameters.

Risorsa bibliografica obbligatoriaNotes and handouts edited by the teacher https://beep.metid.polimi.it/
Risorsa bibliografica facoltativaL. Novotny, B. Hecht, Principles of Nano-Optics, Editore: Cambridge University Press, (II Ed.), Anno edizione: 2012, ISBN: 978-0-511-81353-5
Risorsa bibliografica facoltativaJ. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals - Molding the Flow of Light, Editore: Princeton University Press, (II Ed.), Anno edizione: 2008, ISBN: 978-0-691-12456-8
Risorsa bibliografica facoltativaW. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Editore: Springer, Anno edizione: 2010, ISBN: 978-1-4419-1151-3

Software utilizzato
Nessun software richiesto

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
Ore di studio autonome
Laboratorio Informatico
Laboratorio Sperimentale
Laboratorio Di Progetto
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
schedaincarico v. 1.8.3 / 1.8.3
Area Servizi ICT