Ing Ind - Inf (Mag.)(ord. 270) - CR (263) MUSIC AND ACOUSTIC ENGINEERING
*
A
ZZZZ
052842 - FUNDAMENTALS OF VIBRATION ANALYSIS AND VIBROACOUSTICS
Ing Ind - Inf (Mag.)(ord. 270) - MI (474) TELECOMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI
*
A
ZZZZ
051486 - FUNDAMENTALS OF VIBRATION ANALYSIS AND VIBROACOUSTICS OF MUSICAL INSTRUMENTS
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA
*
A
ZZZZ
051486 - FUNDAMENTALS OF VIBRATION ANALYSIS AND VIBROACOUSTICS OF MUSICAL INSTRUMENTS
Obiettivi dell'insegnamento
This module deals with mechanical vibrations of lumped parameter systems, considering both theory and applications. First, it covers free and forced vibration of linear single-degree-of-freedom systems. It then extends this analysis to two- and multi-degree-of-freedom linear systems. Particular attention is given to frequency domain models and to the principal coordinate formulation based on modal superposition approach.
Risultati di apprendimento attesi
The course will provide students with:
a knowledge of different modelling approaches for the analysis of the vibrations of lumped-parameter system (DD1),
the ability to numerically analyse (with the use of computer programs) the behaviour of simple multi-degree-of-freedom linear systems (DD2/DD3).
an opportunity to develop skills insummarizing and presenting results of computer laboratory activities (DD4)
Argomenti trattati
Vibration of single d.o.f. linear systems:
Derivation of the equation of motion of single degree of freedom linear systems through dynamic equilibrium equations and Lagrange equations
Free vibration: response of the system to initial conditions, definition of natural frequency and damping ratio
Forced vibration: response to constant, harmonic and periodic forces, frequency response function
Vibration of single d.o.f. non-linear systems:
Analysis of static equilibrium positions
Linearization of the equation of motion about a static equilibrium position: effect of constant forces
Vibration of two- and multi-d.o.f. linear systems:
Definition of the equations of motion of the system through Lagrange equations (scalar and matrix formulations)
Vibration modes: definition of natural frequencies, damping ratios and mode shapes.
Analysis of free and forced vibrations
State space and frequency response models
Modal superposition approach for multi d.o.f. systems
Formulation of the equations of motion in terms of principal coordinates
Modal parameters of the system
Analysis of free and forced vibration in principal coordinates
Representation of the frequency response functions in terms of modal coordinates
Prerequisiti
Basic knoledge of the Kinematics and Dynamics of ridid-body systems in plane motion.
Modalità di valutazione
During exercise classes, students are assigned case studies on the modelling and numerical analisys of vibrating systems. Students are requested to prepare short reports on the assignments to be delivered at the final exam. The final exam consists in an oral discussion of the different theoretical topics of the course starting from a critical review of the results presented in the reports.
Bibliografia
Cheli F., Diana G., Advanced Dynamics of Mechanical Systems, Editore: Springer, Anno edizione: 2015
Meirovitch L., Fundamentals of Vibrations, Editore: McGraw-Hill, Anno edizione: 2001
Software utilizzato
Nessun software richiesto
Forme didattiche
Tipo Forma Didattica
Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
32:00
48:00
Esercitazione
8:00
12:00
Laboratorio Informatico
10:00
15:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale
50:00
75:00
Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua
Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese