L'insegnamento prevede 1.5 CFU erogati con Didattica Innovativa come segue:
Blended Learning & Flipped Classroom
Corso di Studi
Codice Piano di Studio preventivamente approvato
Da (compreso)
A (escluso)
Insegnamento
Ing - Civ (Mag.)(ord. 270) - MI (495) GEOINFORMATICS ENGINEERING - INGEGNERIA GEOINFORMATICA
*
A
ZZZZ
052536 - SOFT COMPUTING
Ing Ind - Inf (Mag.)(ord. 270) - CR (263) MUSIC AND ACOUSTIC ENGINEERING
*
A
ZZZZ
052536 - SOFT COMPUTING
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA
*
A
ZZZZ
052536 - SOFT COMPUTING
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA
*
A
ZZZZ
052536 - SOFT COMPUTING
Obiettivi dell'insegnamento
Soft Computing includes technologies to model complex systems dealing explicitly with uncertainty, and offers powerful modeling tools for engineers and in general people needing to model complex phenomena. Among the application areas, we mention: (big) data analysis, classification, automatic control, robotics, modeling of artificial and natural phenomena, modeling of behaviors (e.g., of users and devices), decision support. The course will introduce rigorously the theoretical fundamentals of different modeling approaches, will put in evidence the application possibilities, by comparing different models, examples and application cases, will introduce design techniques for systems based on these technologies.
Goals for this course are listed in the following.
- Presentation of basic knowledge about some technologies within the Soft Computing area, namely: Fuzzy Systems, Genetic Algorithms , and Probabilistic Graphical Models (e.g., Bayesian Networks and Hidden Markov Models).
- Presentation of tools to implement the mentioned technologies.
- Analysis of paradigmatic case studies to understand the applicability issues of the mentioned technologies.
- Development of the ability to analyze a problem, to select the appropriate technology for a problem, to design data, architectures, and processes for the mentioned technologies
- Development of the ability to learn autonomously both declarative and procedural knowledge (thanks to innovative teaching methods, such as flipped class, and blended learning)
Risultati di apprendimento attesi
Acquisition of basic knowledge about some technologies within the Soft Computing area, namely: Fuzzy Systems, Genetic Algorithms, Bayesian Networks, Hidden Markov Models, (DD1)
Acquisition of the ability to analyze a problem, to select the appropriate technology for a problem, to design data, architectures and processes for the mentioned technologies (DD2, DD3)
Acquisition of basic operational abilities to implement the mentioned technologies. (DD2)
Acquisition of the ability to present both the knowledge, the process, and the proposed solutions, as well as to analyze results and data (DD4)
Acquisition of the ability to learn autonomously both declarative and procedural knowledge.
Argomenti trattati
What is Soft Computing: fuzzy systems, neural networks, stochastic algorithms and models
Fuzzy models: fuzzy sets, fuzzy logic, fuzzy rules, motivations for fuzzy modeling, tools for fuzzy systems, design of fuzzy systems, applications.
Genetic Algorithms: basics, evolutionary computation, fitness function, design of applications, tools for genetic algoritms.
Applications: motivations, choices, models, case studies.
Prerequisiti
No specific background is required.
Modalità di valutazione
The evaluation consists in a written exam where both theoretical competence and modeling skills will be tested. Attendance to lessons is important mainly to develop these last, which cannot be acquired from books, but only from experience.
Bibliografia
Slides, links to free material, book suggestions are provided through the course web page on BEEPhttp://beep.polimi.it Note:
Students are strongly advised to consider ALL the resources, included books and not only the slides.
Software utilizzato
Nessun software richiesto
Forme didattiche
Tipo Forma Didattica
Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
30:00
45:00
Esercitazione
20:00
30:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale
50:00
75:00
Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua
Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese