Ing Ind - Inf (Mag.)(ord. 270) - MI (473) AUTOMATION AND CONTROL ENGINEERING - INGEGNERIA DELL'AUTOMAZIONE
*
A
ZZZZ
054420 - SYSTEM IDENTIFICATION AND PREDICTION
052351 - MODEL IDENTIFICATION AND DATA ANALYSIS
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA
*
A
ZZZZ
052351 - MODEL IDENTIFICATION AND DATA ANALYSIS
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA
*
A
ZZZZ
052351 - MODEL IDENTIFICATION AND DATA ANALYSIS
Obiettivi dell'insegnamento
The goal of the course is to enable students to extract (“learn”) from measured data useful information for automation, systems and control applications. The course covers the fundamentals of data-driven learning, system identification and virtual sensing. Each technique is treated both theoretically and practically through computer exercises with real-world data.
Risultati di apprendimento attesi
Through theoretical lectures and computer sessions, the students are expected to:
understand the fundamental problems, shared by applied statistics, machine learning and system identification, that can be encountered while extracting information from a finite set of observations taken from an unknown system;
learn the main tools of statistical learning and system identification;
be able to formulate learning/identification problems corresponding to different applications;
understand a range of algorithms along with their strengths and weaknesses;
be able to apply suitable algorithms to solve application problems;
be able to read current research papers and understand the issues raised by current research in the field.
Argomenti trattati
The program of the course is as follows.
Part 1 (Statistical learning for Automation Systems):
Introduction to statistical learning: main definitions and comparison with similar disciplines
The mathematical foundations of learning
Learning of static models
Data-preprocessing
Clustering
Towards learning of dynamical models
Virtual sensing: the Kalman filter
Part 2 (System Identification and Prediction):
Discrete-time linear dynamical systems: definition and analysis of model classes for Time Series and Input/Output models (Box-Jenkins models, and sub-classes like ARX and ARMAX)
Linear optimal prediction
Black-box identification from measured data-sets of Input/Output models
Black-box identification from measured data-sets of state-space models
Gray-box system-identification using Extended Kalman Filter
Frequency-domany parametric estimation of models from data
Extension to non-linear dynamical systems of black-box system-identification
Prerequisiti
Familiarity with basic concepts of computer science (algorithms and complexity) and dynamical systems theory.
Mathematical maturity in linear algebra and probability theory.
Modalità di valutazione
The exam will be a written test in one of the official available dates. The exam will consist of both theoretical questions and simple (i.e., no computer-aided) exercises. The final marks will be awarded based on correctness of the answers, appropriateness of technical terminology and clarity of exposition. Specifically, the students will be asked to:
show their understanding of the main problems (and the corresponding countermeasures) in the field of data-driven modeling and learning in general;
select and describe the most appropriate tools for a given application;
use analytical methods to solve learning problems of moderate complexity.
Bibliografia
S. Formentin and S.M. Savaresi, Lecture notesSergio Bittanti, Model Identification and Data Analysis, Editore: Wiley, Anno edizione: 2019
Y.S. Abu-Mostafa, M. Magdon-Ismail, H.T. Lin, Learning from data, Editore: AML Book, Anno edizione: 2012
G. James. D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning, Editore: Springer, Anno edizione: 2013 http://www-bcf.usc.edu/gareth/ISL/ Note:
P. van Overschee, B.L. de Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Editore: Kluwer Academic Publishers, Anno edizione: 1996 ftp://ftp.esat.kuleuven.be/pub/SISTA/ida/reports/96-26a.pdf Note:
Freely available online.
L. Ljung, System Identification: theory for the user (II ed.), Editore: Prentice-Hall, Anno edizione: 1999
T.S. Soderstrom, P.G. Stoica, System Identification, Editore: Prentice-Hall, Anno edizione: 1989
Software utilizzato
Nessun software richiesto
Forme didattiche
Tipo Forma Didattica
Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
60:00
90:00
Esercitazione
40:00
60:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale
100:00
150:00
Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua
Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese