logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2018/2019
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 052554 - PHYSICS OF LOW DIMENSIONAL SYSTEMS [I.C.]
  • 052552 - PHYSICS OF LOW DIMENSIONAL SYSTEMS I: PRINCIPLES
Docente Finazzi Marco
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA*AZZZZ052554 - PHYSICS OF LOW DIMENSIONAL SYSTEMS [I.C.]

Obiettivi dell'insegnamento

The aim of the course is to illustrate the electronic ad optical properties developed by low-dimensional systems, where phenomena such as the symmetry reduction, the lower coordintion number, the quantum confinement may induce novel and exotic properties with respect to those that can be observed inside the bulk of a solid. The physical mechanisms acting inside the bulk or at the surface of a solid will be compared in order to highlight their role in defining how the electronic and optical properties of solid matter are influenced by symmetry reduction. During the course the students will be also introduced to the physics of many-body systems beyond the single particle approximation.


Risultati di apprendimento attesi

Pedagogical objectives are:

- Students will learn how to describe complex systems, corresponding to real-world examples, by introducing appropriate models and approximations.
- Students will apply the acquired knowledge to interpret experimental results reported in the scientific literature.
- Students will learn what are the relevant phenomena that intervene to determine optical and electric properties in low dimensional systems.
- Students will understand how low dimensional systems could be engineered to induce artificial properties.


Argomenti trattati

- Band structure.
- Examples of simple metals, 3d metals and insulators. Nearly free electron model and tight binding approximation.
- Density of states: examples in 1, 2 and 3 dimensions.
- Surface electronic states: projected bands structure, Shockley states, Tamm states.
- Transport properties: seclassical electron dynamics, Boltzmann equation.
- Beyond the single particle approximation: Hartree and Hartree-Fock equations. Fermi-Thomas screening.
- Selected examples: graphene, topological insulators, …

- Optical properties.
- Kramers-Kronig relations. Direct and indirect transitions. Joint density of states in 1, 2 and 3 dimensions.
- Excitons and plasmons. Surface plasmons and plasmonics.
- Experimental techniques.


Prerequisiti

- Classical Electromagnetism
- Thermodynamics
- Principles of Quantum Mechanics
- Principles of the Theory of Solids


Modalità di valutazione

Oral evaluation aimed to probe the student preparation with respect to the pedagocical objectives outlined above.


Bibliografia

Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
32:30
48:45
Esercitazione
17:30
26:15
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT
20/06/2021