L'insegnamento prevede 0.5 CFU erogati con Didattica Innovativa come segue:
Blended Learning & Flipped Classroom
Corso di Studi
Codice Piano di Studio preventivamente approvato
Da (compreso)
A (escluso)
Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA
*
A
ZZZZ
052545 - PHOTONICS [I.C.]
Obiettivi dell'insegnamento
The course is intended to provide students with the fundamentals to understand the emission and the detection of optical radiation. The physical principles of light matter interaction and their applications in the most important photonic devices will be extensively treated.
Risultati di apprendimento attesi
Lectures and exercise sessions will allow students to:
know and understand the physical processes at the heart of photonics devices
transfer the physical concepts to applications requiring the generation and detection of optical radiation
gain the capability of modeling photonics devices and their behaviour in engineering systems
develop the expertise to design photonics based applications and systems exploiting the knowlegde acquired in the course
Argomenti trattati
1. Introduction to Radiometry
Definition of radiometric quantities
Theorem of conservation of radiance
Lambertian sources
Radiance and irradiance of one optical image
Basic principles of photometry
2. Radiation detectors
Thermal detectors
Junction detectors (p-n and p-i-n photodiode, avalanche photodiode)
Photoconductive detectors
Charged-Coupled Devices (CCD) and CMOS
Noise in detectors
3. Introduction to quantum optics
Quantization of a single-mode field
Single mode quantum optics:
- the number states and the coherent states
Vacuum fluctuations and zero-point energy
Prerequisiti
Students are required to know the principles of Electromagnetism, Optics and Quantum mechanics. A solid mathematical background on calculus, ordinary and partial differential equations is required.
Modalità di valutazione
The assessment will be based on a written exam consisting of four questions. To pass the exam students are required to demonstrate the knowledge of the topics of course and the capibility to face problems dealing with generation and detection of light. Texts of previous examinations are available on the course website. An oral exam can be requested by students or teachers to complete the evaluation process.
Bibliografia
Gianluca Valentini, Notes on Photonics Note:
The notes of the teacher can be dowloaded from the BeeP website
Frank L. Pedrotti, Leno M. Pedrotti, Leno S. Pedrotti, Introduction to Optics, Editore: Cambridge University Press
Robert W. Boyd, Radiometry and the Detection of Optical radiation, Editore: John Wiley & Sons
John Wilson, John Hawkes, Optoelectronics - an introduction, Editore: Prentice Hall
Govind P. Agrawal, Fiber-optic communication systems (Chapter 4), Editore: John Wiley & Sons
G. Wyszecki, W.S. Stiles, Color Science, Editore: John Wiley & Sons Note:
Reference book
David W. Greve, Field Effect Devices and Applications, Editore: Prentice Hall
Rodney Loudon, The Quantum Theory of Light, Editore: Oxford Science Publications
Software utilizzato
Nessun software richiesto
Forme didattiche
Tipo Forma Didattica
Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
35:00
52:30
Esercitazione
15:00
22:30
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale
50:00
75:00
Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua
Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese