Risorse bibliografiche
 Risorsa bibliografica obbligatoria Risorsa bibliografica facoltativa
 Scheda Riassuntiva
 Anno Accademico 2018/2019 Scuola Scuola di Ingegneria Industriale e dell'Informazione Insegnamento 096110 - ANTENNAS Docente Gentili Gian Guido Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (474) TELECOMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI*AZZZZ096110 - ANTENNAS
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ096110 - ANTENNAS

 Obiettivi dell'insegnamento
 The course aims to provide the student with the basis of radiation theory and of the main concepts of antenna engineering for the design of complex telecommunication systems.The course provides the students with instruments to understand and apply modern design technologies and methodologies. Some design examples are provided in order to teach the students to make autonomous judgements in the design process.

 Risultati di apprendimento attesi
 Dublin Descriptors Expected learning outcomes 1 - Knowledge and understanding Students will learn how to: Make use of mathematical models for the physics of electromagnetic radiation Define and use mathematical models for the analysis of the behavior of antennas at system level and circuit level 2 - Applying knowledge and understanding Students will be able to: Compute the size of an antenna or array based on specific requirements Evaluate the performance of a designed antenna at system level Apply the mathematical models learned by using electromagnetic simulators 3 - Making judgements Students will be able to: ·        Understand the fundamental tradeoff that govern the design of an antenna or array ·        Identify the complexity of different solutions from a circuit point of view ·        Choose a specific antenna type based on the desired radiation behavior

 Argomenti trattati
 Antennas The course aims to provide the student with the basis of radiation theory and of the main concepts of antenna engineering. After introducing radiation theory, the main antennas topologies are introduced with a view to their application field (telecommunications, remote sensing, telemetry). We then discuss the effect of noise and finally show some measurement technique to characterize the main parameters of antennas. Radiation theory. Maxwell equations in differential form, Poynting vector. Radiation from electric hertzian dipole; computation of the near field, the induction field and the radiation field. Magnetic hertzian dipole: duality. The Huygens source. The antenna as a transducer: main circuit parameters and radiation parameters (directivity, directivity function, gain, effective area, characteristic electric and magnetic length, efficiency, equivalent circuit, polarization). Wire antennas (short dipole, half wavelength dipole and others). Aperture antennas (horns, parabolic antennas) Antenna arrays introduction (array factor, coupling) Linear arrays (broadside, endfire, collinear, log-periodic) Leaky wave antennas Antennas measurements.

 Prerequisiti
 At least 10 credits of electromagnetics courses, dealing with Maxwell's equations, transmission lines and distributed circuits, plane waves. Vector algebra, linear equations and calculus are also required.

 Modalità di valutazione
 The examination will consist of a written test with 3 numerical exercises. The student will be asked to - solve numerically some problems related to the topics of the course (knowledge and understanding with application) - to design (numerically) an antenna or an array for a specific goal (making judgement). The student will be often asked to make some reasonable approximation when the solution appears too complex to solve exactly (making judgements). 30 cum laude will be assigned if the total score is greater than 31.

 Bibliografia
 S. J. Orfanidis, Electromagnetic Waves and Antennas David M. Pozar, Microwave Engineering, Editore: Addison-Wesley Robert E. Collin, Foundations for Microwave Engineering, Editore: McGraw-Hill

 Forme didattiche
Tipo Forma Didattica Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
32:30
48:45
Esercitazione
17:30
26:15
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale 50:00 75:00

 Informazioni in lingua inglese a supporto dell'internazionalizzazione
 Insegnamento erogato in lingua Inglese Disponibilità di materiale didattico/slides in lingua inglese Disponibilità di libri di testo/bibliografia in lingua inglese Possibilità di sostenere l'esame in lingua inglese Disponibilità di supporto didattico in lingua inglese
 schedaincarico v. 1.6.5 / 1.6.5 Area Servizi ICT 20/06/2021