Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA
*
A
ZZZZ
096617 - PHYSICS OF PHOTOVOLTAIC PROCESSES
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA
*
A
ZZZZ
096617 - PHYSICS OF PHOTOVOLTAIC PROCESSES
Obiettivi dell'insegnamento
This course concerns the main physical phenomena that occur in the active material of a photovoltaic cell: the absorption of light, the charge generation, the charge transport and recombination. The approach is phenomenological even if it makes extensive use of the concepts and basic tools of quantum mechanics, which are anyway briefly introduced. The proposed models are then compared with existing technologies, describing the photovoltaic cells of the first, second and third generation. The goal is to provide the wealth of basic knowledge needed to design new materials for photovoltaics.
Risultati di apprendimento attesi
Students:
-will learn the fundamentals regarding photovoltaic cell devices
-will acquire knowledge on the state of art in photovoltaic conversion and on the existing technologies, both on the market and at research stage
-will learn the fundamental concepts in photophysics for designing and characterizing new materials and devices for photovoltaic conversion
Argomenti trattati
INTRODUCTION
Solar radiation.
Ultimate theoretical limit of a cell and detailed balance.
Two level system, Density matrix.
Susceptibility and refractive index.
ABSORPTION
Molecular absorption. Adibatic approximation, Vibronic linewidth and Franck-Condon principle. Einstein A and B coefficients. Strickler-Berg relation.
Kasha molecular exciton in aggregates.
Energy transfer (Foerster, Dexter, Frenkel exciton). Absorption in a crystal (band structure, carrier relaxation, Wannier-Mott exciton, dimensionality).
MOLECULAR DYNAMICS
Jablonski diagram, internal conversion, vibrational energy redistribution, radiative decay, inter system crossing, phosphorescence. Mono and bi molecular recombination. Vavilov-Kasha rule.
CHARGE PHOTOGENERATION
Charge transfer states.
Marcus theory. Band to band transition, Onsager, Poole-Frenkel. Donor-Acceptor system.
TRANSPORT
Mobility Hopping in disordered systems. Coherent transport.
Experimental techniques to determine mobility.
PHOTOVOLTAIC DEVICES
General characteristics of a PV cell.
Polymer solar cells. Dye sensitized solar cells. Inorganic semiconductor cells (Si p-n junction and thin films). Luminescent solar collectors. Natural systems.
Prerequisiti
It is assumed a basic knowledge on electromagnetic waves, atomic and molecular physics and radiation-matter interaction. A basic knowledge of quantum mechanics is useful, but it is not strictly required.
Modalità di valutazione
For students attending all lectures evaluation is based on assignments handed in during the course.
For those students randomly or not attending lectures an oral exam.
Bibliografia
Guglielmo Lanzani, The Photophysics behind photovoltaic and photonics, Editore: Wiley VCH
Software utilizzato
Nessun software richiesto
Forme didattiche
Tipo Forma Didattica
Ore di attività svolte in aula
(hh:mm)
Ore di studio autonome
(hh:mm)
Lezione
50:00
75:00
Esercitazione
0:00
0:00
Laboratorio Informatico
0:00
0:00
Laboratorio Sperimentale
0:00
0:00
Laboratorio Di Progetto
0:00
0:00
Totale
50:00
75:00
Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua
Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese