logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2017/2018
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
  • 096280 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES [2] - BIOE 421
Docente Signorini Maria Gabriella
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (1 liv.)(ord. 270) - MI (363) INGEGNERIA BIOMEDICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - BV (478) NUCLEAR ENGINEERING - INGEGNERIA NUCLEARE*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA*AZZZZ098655 - MEDICAL IMAGES - BIOE 421
096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421

Programma dettagliato e risultati di apprendimento attesi

Part [2] Medical Images

Objective

Provide basic concepts on biomedical images. Introduce the related clinical and diagnostic problems and illustrate principles on which techniques for processing and reconstruction are based on.

The Course is constituted by frontal lessons, exercise sessions and laboratory exercises. The attendance of the Course is strongly recommended both at frontal lessons and exercise sessions whose content is also part of the evaluation procedure.

 

Programme of lessons and exercises

Introduction to Medical Imaging modalities

 Introduction to image classification. Image formation: Point Spread Function, Modulation Transfer Function, Spatial and amplitude resolution, Contrast, Signal to Noise ratio. Fourier Transform in the 2D spatial domain. Fotonic images. Artifacts and their removal. Human perception and Biomedical Images. Psychophysics Weber's Law. Perception thresholds for human vision.

 Basic Principles for image processing and reconstruction. Sampling and quantization in the spatial domain. Discrete Fourier Transform in the 2D space domain. Convolution 2D. Image quality enhancement: spatial filters, equalization. Geometric operators. Tomographic reconstruction. Numeric approach to tomographic reconstruction: Radon transform, Sinogram, back-projection and blurring. Filtered back- projection. Ramp high pass filter, Central Slice Theorem.

 X ray Imaging: Basic radiography, X-ray generation, radiation interaction with matter, dose. X-ray instrumentation. Digital Radiology. Mammography, Angiographic X-Ray imaging. Computed Tomography (CT): applications, history and evolution of instrumentation, spiral CT. Tomographic reconstruction application to CT images.

 Nuclear medicine Imaging  Radioactivity. Nuclear Emission images. General principles Single Photon Emission Tomography (SPECT). Detectors and data acquisition system. Positron emission Tomography (PET). Spatial resolution. Detectors. Instrumentation. Dual mode PET-CT scanners.

Magnetic Resonance Imaging (MRI): Principles, Instrumentation, Pulse Sequences, T1 and T2 contrast, image generation. FMRI.

Ultrasound Imaging: Principles, echography and doppler, other contrast agents.

 

Laboratory activities  Exercises with Matlab implementing imagel analysis tools. Application to different medical images. Home work execises with evaluation. Objective of the Lab is teaching how to work on examples of medical image analysys by the most used tools in space and in spatial frequency domain. Students will learn how to preprocess biomedical imagesl, how to extract information which could be of pathophysiological importance. Furthermore practical activity will introduce students to general criteria to work with medical image analysis even different from those seen in the Lab

 

Expected Learning Outcomes  During the Course the student will acquire methodological knowledge about Medical Images as well as applications and their main processing tools  Students will  be able to work on medical images with analysis and processing Matlab tools. Moreover they should be able to work autonomously in application problems different from those addressed in the lessons and/or in the practical exercises.

Prerequisites No mandatory prerequisites; it is advisable to be aware of the fundamentals of digital signal processing.

 

 


Note Sulla Modalità di valutazione

The evaluation will be given on the basis of a written exam, dealing with the topics of Lessons and Exercise hours of the two [1]+[2] (Biomedical Signals and Images) integrant parts of the Course. The Student may choose to take the exam relative to only one Part of the Course, provide that he/she obligates to make the other Part of the Course within the Sessions of the Academic Year of attendance.

The exam is passed when the Student gets a positive evaluation in both Parts. The final grade is the average of single grades obtained in the two parts.

If the Student decides not to accept a positive final (1+2) score, he/she has to repeat the 2 parts.


Bibliografia
Risorsa bibliografica obbligatoriaNotes and Other course material in BEEP https://beep.metid.polimi.it/
Note:

Lesson texts can be dowloaded from Beep Platform. Other material is available and some other will be added

Risorsa bibliografica facoltativaValli, G, Coppini G., Bioimmagini, Editore: Patron, Bologna, Anno edizione: 2012
Note:

(terza Edizione)

Risorsa bibliografica facoltativaWebb A., Introduction to Biomedical Imaging, Editore: IEEE Press - Wiley Interscience, Anno edizione: 2004

Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
32.0
esercitazione
20.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.9 / 1.6.9
Area Servizi ICT
27/01/2022