logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2017/2018
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
  • 096279 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES [1] - BIOE 440
Docente Signorini Maria Gabriella
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (1 liv.)(ord. 270) - MI (363) INGEGNERIA BIOMEDICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - BV (478) NUCLEAR ENGINEERING - INGEGNERIA NUCLEARE*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
098654 - BIOMEDICAL SIGNAL PROCESSING - BIOE 440
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA*AZZZZ096281 - BIOMEDICAL SIGNAL PROCESSING AND MEDICAL IMAGES - BIOE 440-421

Programma dettagliato e risultati di apprendimento attesi

Course Content

Part [1] Biomedical Signal Processing.

Programme of lessons and exercises

Introduction to biomedical signal processing. General block diagram of biomedical signal processing operations. Recall of analog and digital filters.

Cardiovascular System. ECG signal: main superimposed noises.  Most significant configurations from clinical standpoint. High resolution ECG. Ventricular late potentials: pathophysiological aspects and processing methods. Study of Autonomic Nervous System (ANS) by means of heart rate variability  signal processing in  short- and long-term bases. Pathophysiological aspects: neural control in heart rate and arterial blood pressure. Fetal ECG: processing methods and enhancement of useful clinical parameters. Fetal monitoring. Arterial blood pressure signal: detection systems and main clinical parameters. Interaction models among signals related to autonomic nervous system: ECG, arterial blood pressure and respiration; open- and closed-loop models. Pathophysiological interpretations.

Diagnostic Classification. Classification methods. Principal Component Analysis (PCA):  general introduction and applications. Entropy Analysis: methods and applications.

Neurosensorial System. EEG (electroencephalographic) signal analysis, evoked potentials (EPs)  and event-related potentials (ERPs). Review on traditional processing methods with main applications in clinical and research environments: cerebral activity detected on the scalp, at cortical level and in deep brain stimulation (DBS).

Signal processing and parametric identification. Time series analysis detected from biological signals. Examples in ECG, EEG, EP in pre-processing, filtering, prediction, extraction and estimation of parameters. Diagnostic classification. Deterministic and stochastic identification. Review on stochastic identification approaches. Model families, in particular AR/MA/ARMA (autoregressive and moving average) and models with exogenous input X. Parametric spectral analysis, including backward and forward methods, maximum entropy methods, Pisarenko, Prony, etc. Comparison with the traditional non-parametric techniques: various examples on heart rate variability signals, EEGs and EPs.

Laboratory activities  Exercises with Matlab implementing signal analysis tools. Application to biomedical signals. Home work execises with evaluation.

Expected Learning Outcomes  The formative objective is that the student takes possession of the signal processing methods in biomedical signals. At the end they should be able to work autonomously in different practical cases also different from those addressed in the lessons and/or in the laboratory practical exercises.

Prerequisites: No mandatory prerequisites; it is advisable to be aware of the fundamentals of digital signal processing.

 

Part [1] Biomedical Signal processing (short summary)

The course is intended to recall general signal processing aspects, to introduce new methods beyond those considered in the bachelor degree and examine various clinical and research application fields. Methods. From deterministic filtering to stochastic parametric analysis: mono and multi-variate AR/MA/ARMA models and non parametric as well as parametric spectral analysis. Principal component analysis. Entropy in signal processing. Applications. Automatic analysis and classification of the electrocardiographic signal (ECG). The autonomic nervous system, cardiovascular variability signals, and cardiorespiratory interactions. Fetal ECG signal. High resolution ECG and late ventricular potentials. The central nervous system: processing of the electroencephalographic signal (EEG) and of evoked (EP) and event-related potentials (ERP).


Note Sulla Modalità di valutazione

Notes on Evaluation Modalities

The evaluation will be given on the basis of a written exam, dealing with the topics of Lessons and Exercise hours of the two [1]+[2] (Biomedical Signals and Images) integrant parts of the Course. The Student may choose to take the exam relative to only one Part of the Course, provide that he/she obligates to make the other Part of the Course within the Sessions of the Academic Year of attendance.

The exam is passed when the Student gets a positive evaluation in both Parts. The final grade is the average of single grades obtained in the two parts.

If the Student decides  not to accept a positive final (1+2) score, he/she has to repeat the 2 parts.


Bibliografia
Risorsa bibliografica obbligatoriaCourse Notes https://beep.metid.polimi.it/
Risorsa bibliografica obbligatoriaFisiopatologia e Bioingegneria Cardiovascolare https://beep.metid.polimi.it/
Risorsa bibliografica facoltativaJ.G. Webster, Medical Instrumentation : Application and Design , Editore: Houghton Mifflin Co,, Anno edizione: 2010
Risorsa bibliografica facoltativaA.V. Oppenheim, R.W. Schafer, Digital signal processing, Editore: Prentice Hall, Anno edizione: 1975
Risorsa bibliografica facoltativaG. De Nicolao, R. Scattolini, Identificazione Parametrica, Editore: Cusl Milano, Anno edizione: 1997

Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
32.0
esercitazione
20.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.9 / 1.6.9
Area Servizi ICT
27/01/2022