Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2017/2018
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 097314 - DE-MANUFACTURING
Cfu 5.00 Tipo insegnamento Monodisciplinare
Docenti: Titolare (Co-titolari) Colledani Marcello

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento

Programma dettagliato e risultati di apprendimento attesi

Objectives and Contents of the Course

The economical and environmentally sustainable treatment of end-of-life products and industrial waste by de-manufacturing processes is the core topic of this course. De-manufacturing includes the set of technologies, tools and knowledge-based methods to remanufacture and re-use functions and to recover materials from industrial waste and post-consumer high-tech products, under a circular economy perspective. This course provides competences related to mechanical de-manufacturing processes and systems, with the objective to design and operate these technologies in environmental and economical sustainable way, in different industrial settings. 

The course will be structured to cover the following topics:

-       De-manufacturing paradigm: definition of de-manufacturing systems and examples of industrial applications; de-manufacturing performance measures; integrated process and system view of the problem.

-       De-manufacturing technologies: description of mechanical de-manufacturing processes, including disassembly, re-manufacturing and recycling technologies; mechanical size-reduction and separation processes; the role of statistical and mechanical models in the design of de-manufacturing processes; advanced de-manufacturing technologies based on automated optical systems.

-       De-manufacturing systems: features of de-manufacturing systems; material mixtures and granular flow models; multi-stage de-manufacturing systems modeling; performance evaluation and design of de-manufacturing systems; flexibility in de-manufacturing systems.

The students will carry out laboratory activities to develop hands-on knowledge on specific processes and process-chains.


Detailed Lectures Plan (32h)

Introduction (6h)

  • De-manufacturing paradigm: definitions and context.
  • Integrated view of disassembly, remanufacturing, recycling, and recovery.
  • Overview of de-manufacturing processes and systems.
  • Examples:

o   Remanufacturing of mechatronic components in the automotive industry: Electronic Control Units (ECUs), starters, alternators, engines.

o   Recycling systems for End of Life Vehicles: workflow and ASR (Automotive Shredding Residue) problem.

o   Recycling systems for WEEE: focus on Printed Circuit Boards (PCBs).

o   Recovery of key-metals by metallurgical processes from Lamps, hard drives, and PCBs.

  • Performance Measures: grade/recovery trade-off.
  • Integrated process and system view of the problem.

 De-manufacturing processes and technologies (13h)

  • Mechanical disassembly and remanufacturing processes. Disassembly graphs and disassembly planning.
  • Mechanical recycling processes: size-reduction and separation.
  • Mechanical size-reduction processes:

o   Overview of the cutting mechanisms;

o   Population Based Models for size reduction processes;

o   Experimental analysis.

o   Application and analysis of the results.

  • Mechanical Separation processes:

o   Separation principles, physics and mechanisms;

o   Overview of technologies: eddy current separation, electrostatic separation, magnetic separation, floatation, sieving, jigging, separation by air, optical sorting technologies (NIR, VIS, SWIR). Comparison of technologies and criteria for the selection of the most suitable process/technology.

o   Modeling and simulation of separation processes;

o   Analysis of the output and use of the models for process parameters optimization.

  • Thermal and chemical processes: characteristics and requirements on the upstream processes.

 De-manufacturing systems (13h):

  • De-manufacturing systems architectures and material transportation technologies.
  • Modeling material mixtures and granular flows.
  • Performance Evaluation of de-manufacturing systems:

o   Mass Balance Equations;

o   Analytical modeling of de-manufacturing systems dynamics.

  • Design of de-manufacturing systems;
  • Flexibility and modularity in de-manufacturing systems.


Detailed Classworks and Labs Plan (21h)

 De-manufacturing process planning (4h):

  • Lab: given a set of electronic and mechatronic products, the student will analyze their structure, their materials, their joints and will decide upon the best possible de-manufacturing process sequence.
  • Exercises: calculation of performance measures.

 De-manufacturing processes and technologies (9h):

  • Exercises: disassembly and remanufacturing.
  • Exercises: selection of the best mechanical recycling process-chain, given mixture properties and material value.
  • Exercises: use of the size reduction simulation model for process parameters’ selection.
  • Exercise: use of the separation models for the analysis of the recovery and grade in different operating conditions.
  • Lab: visit to the ITIA-CNR De-manufacturing plant. Experimental activities at process level.

 De-manufacturing systems (8h):

  • Exercises: material flow and particle characterization and modeling.
  • Exercises: analytical modeling of de-manufacturing system.
  • Exercises: reconfiguration of recycling systems; impact of different flow control logics.
  • Lab: visit to the ITIA-CNR De-manufacturing plant. Experimental activities at system level.

Note Sulla Modalità di valutazione

The course is based on lectures, integrated with exercise sessions, also in computer rooms, as well as laboratory sessions with hands-on and experimental activities at lab scale. Moreover, optional industrial visits will be organized.

The exam includes a written part and an oral part. Optional seminars and small projects will also be offered to deeply analyze specific topics of the course in small teams. The quality of this integrative work will be reflected in the final mark. 


Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
laboratorio informatico
laboratorio sperimentale
laboratorio di progetto

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.9.7 / 1.9.7
Area Servizi ICT