logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2017/2018
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 095394 - SEMICONDUCTOR RADIATION DETECTORS
Docente Castoldi Andrea
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - BV (478) NUCLEAR ENGINEERING - INGEGNERIA NUCLEARE*AZZZZ095394 - SEMICONDUCTOR RADIATION DETECTORS
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA*AZZZZ095394 - SEMICONDUCTOR RADIATION DETECTORS
Ing Ind - Inf (Mag.)(ord. 270) - MI (476) ELECTRONICS ENGINEERING - INGEGNERIA ELETTRONICA*AZZZZ095394 - SEMICONDUCTOR RADIATION DETECTORS
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA*AZZZZ095394 - SEMICONDUCTOR RADIATION DETECTORS

Programma dettagliato e risultati di apprendimento attesi

Obiettivi (Aims and learning outcomes)

The course gives the unique opportunity within the Master course in Electronics Engineering to familiarize with the growing field of semiconductor radiation detection. Those systems are nowadays used not only in fundamental research but also in biomedical and industrial applications with an increasing demand for experts in the field. The course provides deep understanding of the behavior and limitations of the main types of semiconductor detectors aiming at the measurement of diverse properties (e.g. energy, time, position) of the incident radiation (X and gamma rays, visible photons, charged particles, etc.). The program covers basic and advanced detectors presently in use in a variety of scientific and technological fields and the more recent challenges and research developments. The course has a design approach that highlights the physical principles and architecture of the detection cell and proceeds along the signal path in order to analyze the basic mechanism of signal formation and the readout architectures to achieve the ultimate performances.

The course includes in-depth analysis of selected case studies, both in class and in the laboratory, also with contributions from international experts in the field. A visit to an international scientific center with relevant activities in the development of detection systems will be possibly organized during the semester. 

 

Programma delle lezioni e delle esercitazioni (Syllabus)

1. Interaction of radiation with matter: photons and charged particles, mean creation energy, statistical fluctuations.

2. Semiconductors as radiation detectors: charge transport, generation-recombination, charge multiplication mechanisms, trapping.

3. Signal formation in radiation detectors: Shockley-Ramo's theorem, computation of induced current shapes in relevant case studies.

4. Semiconductor detectors for energy and position measurement of X-rays, gamma-rays, charged particles: microstrip detectors, pixel detectors, semiconductor drift detectors for spectroscopy and position-sensing, non-silicon detectors.

5. Readout electronics: low-noise architectures and processing techniques.

6. Imaging pixel sensors: Charge Coupled Devices (CCD), CMOS monolithic active pixel sensors.

7. Advanced detector-amplification structures.

8. Examples of detection systems for frontier applications: synchrotron light experiments, astrophysics, diagnostic imaging, high energy physics experiments, etc.
 

Attività di laboratorio (Laboratory activities)

Laboratory activities aim at making students more familiar with practical detection systems and with the main instrumental facilities of a detector laboratory. Students will tackle realistic detector design problems and will conduct experiments on detection systems. Simulation codes will be used also for the computation of the potential distribution in semiconductor detectors.

 

Prerequisiti (Prerequisites)

Calculus and differential equations. Electromagnetic field and Maxwell equations. Semiconductor devices: energy band representation, pn junction, metal-semiconductor contact, transistors. Basic transistor amplifying stages.


Note Sulla Modalità di valutazione

Oral examination. The interview will touch all the topics covered by the course. The student is expected to master the subject and to show a critical approach in the discussion.

The course website (http://home.deib.polimi.it/castoldi/srd/) reports latest news on course and office hours, exams, teaching material.


Bibliografia
Risorsa bibliografica obbligatoriaGerhardt Lutz, Semiconductor Radiation Detectors, Editore: Springer, Anno edizione: 2007, ISBN: 9783540716792
Risorsa bibliografica facoltativaGlenn F. Knoll, Radiation Detection and Measurement, Editore: Wiley, Anno edizione: 2010
Risorsa bibliografica obbligatoriaAdditional teaching material http://home/deib.polimi.it/castoldi/srd/
Note:

Suggested readings will be made available during the course


Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
30.0
esercitazione
18.0
laboratorio informatico
0.0
laboratorio sperimentale
4.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.9 / 1.6.9
Area Servizi ICT
27/01/2022