 |
Risorsa bibliografica obbligatoria |
 |
Risorsa bibliografica facoltativa |
|
Anno Accademico
|
2017/2018
|
Scuola
|
Scuola di Ingegneria Industriale e dell'Informazione |
Insegnamento
|
098460 - ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE [I.C.]
- 098459 - ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE 2
|
Docente |
Barbieri Riccardo
|
Cfu |
5.00
|
Tipo insegnamento
|
Modulo Di Corso Strutturato
|
Corso di Studi |
Codice Piano di Studio preventivamente approvato |
Da (compreso) |
A (escluso) |
Insegnamento |
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA | * | A | ZZZZ | 098460 - ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE [I.C.] | 085817 - ANALISI AVANZATE DEI DATI PER LA MEDICINA E LA BIOINFORMATICA [C.I.] |
Programma dettagliato e risultati di apprendimento attesi |
098459 - ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE 2 – 5 CFU – BARBIERI RICCARDO
This course provides a selected overview of some of the most successful signal processing tools used in Medicine. The main paradigm theme focuses on critical conceptual concepts related to the field of Information Theory. Algorithms span from simple modeling mathematical constructs to modeling complex frameworks inspired by statistics. The course aims at introducing advanced signal processing methods and at integrating modeling and processing methods in order to obtain relevant physiological and clinical information. Applications relevant to the Central Nervous System, to the Autonomic Nervous Systems, to the Cardiovascular System, to the Respiratory Systems and their interactions will be considered.
BRIEF INDEX:
- Introduction to Information Theory
- Statistical modeling: Bayes' rule, State-Space Models, Neural and Cardiovascular Point Process Models.
- Blind source separation: Use of principal component analysis (PCA) and independent component analysis (ICA) for filtering.
- Multivariate Causality and Higher Order Spectra.
- Highlight on Statistical Learning and Data Mining.
- Regression and Classification.
- Machine Learning: Graph Search, Constraint Satisfaction, Nearest Neighbors, Decision Trees, Neural Networks, Support Vector Machines.
- Physiological Brain Correlates: Combining Brain Imaging techniques with Physiological variables.
Expected competencies developed by Students at the end of the course. The Students will be able to understand, design, and implement advanced signals and data processing algorithms and tools in Medicine and Biology.
|
Note Sulla Modalità di valutazione |
The evaluation will be given on the basis of two oral exams over the topics presented in the Lectures and Exercise hours of the two Parts [1][2] (Advanced Signals and Data Processing in Medicine) of the integrated Course. At each call, the Student may choose to take the exam relative to both Parts of the Integrated Course, or one of the two Parts, provided that he/she passes the remaining Part of the Course in one of the Sessions of the Academic Year of attendance. The exam is passed if the Student gets a positive evaluation in both Parts. The final grade is the average of the two grades obtained in each of the two parts.
|
Lecture Slides BEEP
S. Cerutti, C. Marchesi, Advanced Methods of Biomedical Signal Processing, Editore: IEEE-Wiley Press, Anno edizione: 2001
J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning - Data Mining, Inference, and Prediction 2ed,, Editore: Springer, Anno edizione: 2008
|
Nessun software richiesto |
Tipo Forma Didattica
|
Ore didattiche |
lezione
|
30.0
|
esercitazione
|
20.0
|
laboratorio informatico
|
0.0
|
laboratorio sperimentale
|
0.0
|
progetto
|
0.0
|
laboratorio di progetto
|
0.0
|
Informazioni in lingua inglese a supporto dell'internazionalizzazione |
Insegnamento erogato in lingua

Inglese
|
Disponibilità di materiale didattico/slides in lingua inglese
|
Disponibilità di libri di testo/bibliografia in lingua inglese
|
Possibilità di sostenere l'esame in lingua inglese
|
|