 |
Risorsa bibliografica obbligatoria |
 |
Risorsa bibliografica facoltativa |
|
Anno Accademico
|
2017/2018
|
Scuola
|
Scuola di Ingegneria Industriale e dell'Informazione |
Insegnamento
|
098460 - ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE [I.C.]
|
Docente |
Barbieri Riccardo
,
Cerutti Sergio
|
Cfu |
10.00
|
Tipo insegnamento
|
Corso Integrato
|
Corso di Studi |
Codice Piano di Studio preventivamente approvato |
Da (compreso) |
A (escluso) |
Insegnamento |
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA | * | A | ZZZZ | 098460 - ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE [I.C.] | 085817 - ANALISI AVANZATE DEI DATI PER LA MEDICINA E LA BIOINFORMATICA [C.I.] |
Programma dettagliato e risultati di apprendimento attesi |
ADVANCED SIGNALS AND DATA PROCESSING IN MEDICINE
This integrated course aims at teaching advanced signal processing methods for combining signal and data treatment with theoretical modeling, as well as for implementation of different methods and algorithms for data-mining and classification. The objective is to improve the relevant information obtainable in Medicine for both physiological and clinical purposes through the application of these advanced methodological and processing tools.
PART 1 (Prof. Sergio Cerutti). From deterministic to stochastic filtering. Recursive and non-recursive estimators. Optimal estimators. Optimal filters and parametric identification: Wiener filters and Kalman filters. Adaptive filters. Time-variant parametric methods. Time-frequency analysis, time-scale and wavelet analysis. Linear approach and quadratic distributions. Complexity of biomedical systems and signals: basic definitions of systems with non-linear dynamics. Higher order analysis of biomedical signals: bispectrum and bicoherence. A new approach for the processing of biomedical information: "multi"-paradigm. Integration of the information in multivariate, multiorgan, multimodal and multiscale approaches: fusion of the information across the single scales.
PART 2 (Prof. Riccardo Barbieri). Introduction to Information Theory. Statistical modeling: Bayes' rule, State-Space Models, Neural and Cardiovascular Point Process Models. Blind source separation: Principal component analysis (PCA) and independent component analysis (ICA) for filtering. Multivariate Causality and Higher Order Spectra. Highlight on Statistical Learning and Data Mining. Regression and Classification. Machine Learning: Graph Search, Constraint Satisfaction, Nearest Neighbors, Decision Trees, Neural Networks, Support Vector Machines. Physiological Brain Correlates: Combining Brain Imaging techniques with Physiological variables.
The course will consider applications relevant to the Central Nervous System, to the Autonomic Nervous Systems, to the Cardiovascular System, to the Respiratory Systems and their interactions.
|
Note Sulla Modalità di valutazione |
The evaluation will be given on the basis of an oral exam, covering the topics dealt with during the Lessons and Exercise hours of the two Parts [1][2] (Advanced Signals and Data Processing in Medicine) which constitute integrant parts of the Course. The Student may choose to take the exam relative to only one Part of the Integrated Course, provided that he/she passes the other Part of the Course within the Sessions of the Academic Year of attendance. The exam is passed if the Student gets a positive evaluation in both Parts. The final grade is the average of the single grades obtained from the two parts.
|
Notes for the Students Beep
S. Cerutti, C. Marchesi eds.,, Advanced Methods of Biomedical Signal Processing, Editore: IEEE-Wiley Press, Anno edizione: 2001
S. M. Bozic, Digital and Kalman Filtering, Editore: E. Arnold Publ, Anno edizione: 1979
R.M. Rangayyan, Biomedical Signal Analysis, Editore: IEEE Press, Anno edizione: 2002
J.G. Webster, Medical Instrumentation : Application and Design, Editore: Houghton Mifflin Co., Anno edizione: 2010
R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, Editore: Wiley
S.V.Vaseghi, Advanced Digital Signal Processing and Noise Reduction, Editore: John Wiley and Sons, Anno edizione: 2006
J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning - Data Mining, Inference, and Prediction 2ed, Editore: Springer, Anno edizione: 2008
|
Nessun software richiesto |
Tipo Forma Didattica
|
Ore didattiche |
lezione
|
60.0
|
esercitazione
|
40.0
|
laboratorio informatico
|
0.0
|
laboratorio sperimentale
|
0.0
|
progetto
|
0.0
|
laboratorio di progetto
|
0.0
|
Informazioni in lingua inglese a supporto dell'internazionalizzazione |
Insegnamento erogato in lingua

Inglese
|
Disponibilità di materiale didattico/slides in lingua inglese
|
Disponibilità di libri di testo/bibliografia in lingua inglese
|
Possibilità di sostenere l'esame in lingua inglese
|
Disponibilità di supporto didattico in lingua inglese
|
|