 |
Risorsa bibliografica obbligatoria |
 |
Risorsa bibliografica facoltativa |
|
Anno Accademico
|
2017/2018
|
Scuola
|
Scuola di Ingegneria Industriale e dell'Informazione |
Insegnamento
|
097382 - APPLIED STATISTICS
|
Docente |
Secchi Piercesare
|
Cfu |
5.00
|
Tipo insegnamento
|
Monodisciplinare
|
Corso di Studi |
Codice Piano di Studio preventivamente approvato |
Da (compreso) |
A (escluso) |
Insegnamento |
Des (1 liv.)(ord. 270) - BV (1153) DESIGN DEGLI INTERNI | * | A | ZZZZ | 098593 - APPLIED STATISTICS | Des (1 liv.)(ord. 270) - BV (1154) DESIGN DELLA COMUNICAZIONE | * | A | ZZZZ | 098593 - APPLIED STATISTICS | Des (1 liv.)(ord. 270) - BV (1155) DESIGN DELLA MODA | * | A | ZZZZ | 098593 - APPLIED STATISTICS | Des (1 liv.)(ord. 270) - BV (1156) DESIGN DEL PRODOTTO INDUSTRIALE | * | A | ZZZZ | 098593 - APPLIED STATISTICS | Des (Mag.)(ord. 270) - BV (1092) DESIGN DEGLI INTERNI - INTERIOR DESIGN | * | A | ZZZZ | 050817 - APPLIED STATISTICS | Des (Mag.)(ord. 270) - BV (1097) DESIGN FOR THE FASHION SYSTEM - DESIGN PER IL SISTEMA MODA | * | A | ZZZZ | 050817 - APPLIED STATISTICS | Des (Mag.)(ord. 270) - BV (1159) PRODUCT SERVICE SYSTEM DESIGN - DESIGN PER IL SISTEMA PRODOTTO SERVIZIO | * | A | ZZZZ | 050817 - APPLIED STATISTICS | Des (Mag.)(ord. 270) - BV (1160) DESIGN DEL PRODOTTO PER L'INNOVAZIONE | * | A | ZZZZ | 050817 - APPLIED STATISTICS | Des (Mag.)(ord. 270) - BV (1162) DESIGN DELLA COMUNICAZIONE | * | A | ZZZZ | 050817 - APPLIED STATISTICS | Des (Mag.)(ord. 270) - BV (1261) INTEGRATED PRODUCT DESIGN | * | A | ZZZZ | 050817 - APPLIED STATISTICS | Ing Ind - Inf (Mag.)(ord. 270) - BV (479) MANAGEMENT ENGINEERING - INGEGNERIA GESTIONALE | * | A | ZZZZ | 099433 - APPLIED STATISTICS FOR ENG4SD | 097382 - APPLIED STATISTICS |
Programma dettagliato e risultati di apprendimento attesi |
The course covers new approaches in the areas of statistical modeling and data analysis, using ideas that bridge the gap between statistics and computer science and developing tools for the statistical mining of big data. The focus is on predictive learning, with particular emphasis on recent advances in regression and classification.
Program:
1) Introduction to statistical learning.
2) Dimension reduction. Principal Component Analysis.
3) Linear Models. Simple and multiple linear regression. Estimating the coefficients, assessing the accuracy of the coefficient estimates, assessing the accuracy of the model. Qualitative predictors. Model selection and regularization: subset selection, shrinkage methods (ridge regression and lasso), dimension reduction methods.
4) Supervised classification. Logistic regression. Linear and Quadratic discriminant analysis.
5) Unsupervised classification. Hierarchical clustering, K-means clustering.
6) Resampling methods. Cross-validation. The bootstrap.
7) Tree-based methods. Classification and regression trees. Bagging, random forests, boosting.
Following a blended learning approach, the course will make extensive use of the Statistical Learning MOOC by Hastie and Tibshirani referenced in the Bibliography. All methods will be illustrated using applications from marketing, finance, biology and other areas; the R free software environment for statistical computing and graphics (downloadable at www.r-project.org ) will be used and illustrated throughout the course and its lab sessions.
Through the course, students are expected to work in team on a real data analysis project whose progress will be shown periodically to the class.
|
Note Sulla Modalità di valutazione |
The exam consists of two parts: a written exam and the presentation of the data analysis team project. To obtain a positive final mark for the course the student should pass each part of the exam with a grade greater than or equal to 18/30; the final mark is then obtained as the weighted average of two grades, with weights respectively equal to 0.6 for the written exam and 0.4 for the project presentation
|
James G., Witten D., Hastie T., Tibshirani R., An introduction to statistical learning, with application to R, Editore: Springer, Anno edizione: 2013 http://www-bcf.usc.edu/~gareth/ISL/getbook.html
Statistical Learning MOOC by Hastie and Tibshirani http://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/
Johnson R.A., Wichern, D.W., Applied Multivariate Statistical Analysis , Editore: Prentice Hall, Anno edizione: 2002
|
Nessun software richiesto |
Tipo Forma Didattica
|
Ore didattiche |
lezione
|
32.0
|
esercitazione
|
16.0
|
laboratorio informatico
|
0.0
|
laboratorio sperimentale
|
0.0
|
progetto
|
0.0
|
laboratorio di progetto
|
0.0
|
Informazioni in lingua inglese a supporto dell'internazionalizzazione |
Insegnamento erogato in lingua

Inglese
|
Disponibilità di materiale didattico/slides in lingua inglese
|
Disponibilità di libri di testo/bibliografia in lingua inglese
|
Possibilità di sostenere l'esame in lingua inglese
|
Disponibilità di supporto didattico in lingua inglese
|
|