logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2015/2016
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 097578 - SINGLE-MOLECULE SPECTROSCOPY AND NANOPHOTONICS
Docente Knappenberger Kenneth
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (486) ENGINEERING PHYSICS - INGEGNERIA FISICA*AZZZZ097578 - SINGLE-MOLECULE SPECTROSCOPY AND NANOPHOTONICS

Programma dettagliato e risultati di apprendimento attesi

Overview:

 

This course covers application and theory of optical spectroscopic phenomena, making connections between theory and emergent areas of research, including biophysics and nanosciences. Since the first optical measurement of a single molecule, over twenty years ago, the field has expanded to include chemical imaging with spatial resolutions that greatly surpass the diffraction limit. These advances have been recognized by a 2014 Nobel Prize. Upon completion of this short course, students will understand the differences in information content of various types of optical imaging signals and acquire the knowledge needed for practical design of a single-molecule spectroscopy or spatially resolved measurement. Topics include: electronic and vibrational spectroscopy, fluorescence, single-molecule spectroscopy, resonance energy transfer and exciton interactions. Applications of nanophotonic materials for increasing the information content of optical measurements will be emphasized. The concepts will be extended to describe recent advances made in improving the temporal and spatial resolution of optical imaging techniques.

 

Course Content:

 

Electromagnetic radiation

  1. Properties of light
  2. Light sources
  3. Properties of LASERS

 

Basic concepts of quantum mechanics

  1. Wavefunctions, operators, and expectation values
  2. Spatial wavefunctions
  3. Spin wavefunctions
  4. Time-dependent perturbation theory
  5. Lifetimes of states and the Uncertainty Principle

 

Nanophotonic materials

  1. Optical properties of quantum-confined nanoparticles
  2. Light-matter interactions of plasmonic nanoparticles
  3. Plasmonic optical signal amplification and transduction

 

Fluorescence spectroscopy

  1. Fluorescence emission and anisotropy
  2. Resonance Energy Transfer
  3. Single-molecule fluorescence spectroscopy

 

Fluorescence and Nonlinear Optical Microscopy

  1. Energy-resolving power
  2. Temporal resolution
  3. Signal-to-noise

Reading Materials:

 

The instructor will provide all required reading materials. Many lectures will be derived from relevant literature. Some examples of key papers to be discussed include:

           

Phys. Rev. B, volume 67, 125304 (2003).

Science, volume 303, pp. 676-678 (2004).

Acc. Chem. Res. Volume 38, 574-582 (2005).

 

Optional Supplemental Reading:

 

             J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”

 

            William W. Parson. “Modern Optical Spectroscopy With Examples from Biophysics and Biochemistry”

 


Note Sulla Modalità di valutazione

The course assessment will be made by either oral or written examination. The content of the course assessment will be derived from important topics covered during lecture.


Bibliografia

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
32.0
esercitazione
16.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.6.5 / 1.6.5
Area Servizi ICT
20/06/2021