logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2015/2016
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 080931 - ALGEBRA AND MATHEMATICAL LOGIC
Docente Mauri Luca
Cfu 5.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA*AZZZZ080931 - ALGEBRA AND MATHEMATICAL LOGIC

Programma dettagliato e risultati di apprendimento attesi

This is an introductory course in logic. It focuses on the basic techniques and theorems of first order logic and on some of their applications. It is also meant to provide sound foundations for the use of formal languages both in mathematics and computer science and to lay the ground for more advanced courses in logic. Along the way, algebraic concepts will be introduce as instrumental to the development of Tarski's semantics of first order logic and in order to provide interesting models of theories. Lab sessions will be used to present a theorem prover and to discuss its use in the automation of proofs.By the end of the course the student should be able to formalize simple reasonings from mathematics and natural language into the language of first order logic and to check their correctness by logical means, both manually and with the help of software.There is no logic prerequisite for this course. Nevertheless, knowledge of linear algebra from geometry courses and of elementary set theory from analysis courses is strongly recommended as it will be needed when working with examples of algebraic structures.

Topics

  1. Propositional logic. The language of propositional logic: variables, connectives, formulas. Semantics: evaluations, truth tables, models, satisfiability. Semantic equivalence. Normal forms. Syntax: deductive systems, axioms, theorems. The Hilbert deductive system for PL. Soundness and completeness. Resolution for PL.
  2. Relations and functions. Relations, operations with relations, representation by graphs and incidence matrices, closure operators. Equivalence relations and quotient sets. Order relations, posets, lattices. Functions, invertibility of functions, isomorphism theorems and factorizations. Cardinalities: definition, characterization of infinite sets, Cantor's theorem. Operations.
  3. First order logic. First order languages: variables, function and predicate symbols, terms, atomic formulas, formulas. Free and bound variables. Semantics: interpretations, models, satisfiability, validity. Prenex form. Skolemization. Resolutionfor first order logic: substitution, unification. Soundness and completeness. The Hilbert system for first order logic. First order theories: theories, theories with equality, algebraic theories, models.
  4. Algebraic structures. Internal operations, neutral elements, associativity, commutativity. Algebraic structures: semigroups, monoids, groups, abelian groups, rings, fields, skew fields. Morphisms of structures. Substructures. Congruence relations on a structure and quotients. Modular arithmetic. Morphisms of structures and their factorization. Normal subgrups and ideals. Boolean algebras.

 


Note Sulla Modalità di valutazione

Students will have to take a written exam to earn a pass grade; the exam may comprise both exercises and theoretical questions. There will also be an opportunity, for students regularly attending the course, to write classworks for each section of the course which, when fully completed as indicated by the lecturer, will contribute significantly toward the final grade.






Bibliografia
Risorsa bibliografica obbligatoriaLecture notes beep.metid.polimi.it
Note:

Available from the course page on the Beep platform

Risorsa bibliografica obbligatoriaExercises beep.metid.polimi.it
Note:

Available from the course page on the Beep platform

Risorsa bibliografica facoltativaE. Mendelson, Introduction to mathematical logic
Risorsa bibliografica facoltativaM. Artin, Algebra
Risorsa bibliografica facoltativaM. Ben-Ari, Mathematical logic for computer science
Risorsa bibliografica facoltativaS. Buss, An introduction to proof theory
Risorsa bibliografica facoltativaD. van Dalen, Logic and structure
Risorsa bibliografica facoltativaI. Herstein, Topics in algebra
Risorsa bibliografica facoltativaK. Rosen, Discrete mathematics and its applications

Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
32.0
esercitazione
16.0
laboratorio informatico
4.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
Disponibilità di materiale didattico/slides in lingua inglese
Disponibilità di libri di testo/bibliografia in lingua inglese
Possibilità di sostenere l'esame in lingua inglese
Disponibilità di supporto didattico in lingua inglese
schedaincarico v. 1.8.3 / 1.8.3
Area Servizi ICT
28/11/2023