 |
Risorsa bibliografica obbligatoria |
 |
Risorsa bibliografica facoltativa |
|
Anno Accademico
|
2014/2015
|
Scuola
|
Scuola di Ingegneria Industriale e dell'Informazione |
Insegnamento
|
089218 - ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING
|
Docente |
Bonarini Andrea
|
Cfu |
5.00
|
Tipo insegnamento
|
Modulo Di Corso Strutturato
|
Corso di Studi |
Codice Piano di Studio preventivamente approvato |
Da (compreso) |
A (escluso) |
Insegnamento |
Ing Ind - Inf (Mag.)(ord. 270) - MI (401) INGEGNERIA BIOMEDICA | * | A | ZZZZ | 089216 - SOFT COMPUTING | Ing Ind - Inf (Mag.)(ord. 270) - MI (434) INGEGNERIA INFORMATICA | * | A | ZZZZ | 089218 - ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING | 089216 - SOFT COMPUTING | Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA | * | A | ZZZZ | 089216 - SOFT COMPUTING | Ing Ind - Inf (Mag.)(ord. 270) - MI (481) COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA | * | A | ZZZZ | 089218 - ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING | 089216 - SOFT COMPUTING |
Programma dettagliato e risultati di apprendimento attesi |
Goals
Soft Computing includes technologies (Fuzzy Systems, Neural Networks, Stochastic Algorithms and models) to model complex systems and offers powerful modeling tools for engineers and in general people needing to model phenomena. Among the application areas, we mention: data analysis, automatic control, modeling of artificial and natural phenomena, modeling of behaviors (e.g., of users and devices), decision support. The course will introduce rigorously the fundamentals of the different modeling approaches, will put in evidence the application possibilities, by comparing different models, examples and application cases, will introduce design techniques for systems based on these technologies. No specific background is required.
Contents
What is Soft Computing: fuzzy systems, neural networks, stochastic algorithms and models - Fuzzy models: fuzzy sets, fuzzy logic, fuzzy rules, motivations for fuzzy modeling -Neural networks: basics, supervised and unsuprvised learning, main models, selection and evaluation. Stochastic models: basics, optimization of models, fitness function, model definition, genetic algorithms, reinforcement learning, bayesian networks. Applications: motivations, choices, models, case studies.
|
Note Sulla Modalità di valutazione |
The evaluation consists in a written exam where both theoreticalcompetence and design skills will be tested.
|
Nessun software richiesto |
Tipo Forma Didattica
|
Ore didattiche |
lezione
|
30.0
|
esercitazione
|
20.0
|
laboratorio informatico
|
0.0
|
laboratorio sperimentale
|
0.0
|
progetto
|
0.0
|
laboratorio di progetto
|
0.0
|
Informazioni in lingua inglese a supporto dell'internazionalizzazione |
Insegnamento erogato in lingua
--
|
Disponibilità di materiale didattico/slides in lingua inglese
|
Disponibilità di libri di testo/bibliografia in lingua inglese
|
Possibilità di sostenere l'esame in lingua inglese
|
Disponibilità di supporto didattico in lingua inglese
|
|