logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2014/2015
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 096233 - MATHEMATICAL AND NUMERICAL METHODS IN ENGINEERING [I.C.]
  • 096229 - MATHEMATICAL AND NUMERICAL METHODS IN ENGINEERING [1]
Docente Grasselli Maurizio
Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - BV (478) NUCLEAR ENGINEERING - INGEGNERIA NUCLEARE*AZZZZ096295 - MATHEMATICAL METHODS IN ENGINEERING
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA*AZZZZ096233 - MATHEMATICAL AND NUMERICAL METHODS IN ENGINEERING [I.C.]

Programma dettagliato e risultati di apprendimento attesi

Mathematical and Numerical Methods in Engineering

GOALS AND CONTENTS

The didactical goal is twofold. First we intend to present some classical differential models of Continuum Mechanics, developing and analyzing some finite difference schemes for their approximation. Second we want to introduce the variational formulation of some boundary value problems together with the finite element method for their numerical approximation. The course is characterized by a constant synergy between modeling, theoretical aspects and numerical simulation.

TOPICS First module of the course

Mathematical Methods

Differential calculus for functions of several real variables. Series of functions. Transport equation. Traffic flow models. Method of characteristics. Rankine-Hugoniot relation. Shock and rarefaction waves. Entropy condition. Heat equation. Well-posed problems. Separation of variables. Maximum principles. Fundamental solution. Cauchy problem in the half-space. Duhamel principle. Harmonic functions. Mean value properties. Maximum principles. Well-posed problems. Poisson’s formula for the disk. Newtonian potentials. String equations. Well-posed problems and separation of variables. D’Alembert formula. Kirchhoff formula and Huygens principle. Lebesgue integral. Projection theorem and Riesz representation theorem. Bilinear form, abstract variational problems and Lax-Milgram lemma. Schwartz distributions. Function spaces of finite energy (Sobolev spaces). Variational formulation of elliptic problems and applications to transport-reaction-diffusion equations.
 


Note Sulla Modalità di valutazione
 

Bibliografia

Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
35.0
esercitazione
25.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
schedaincarico v. 1.8.3 / 1.8.3
Area Servizi ICT
29/09/2023