Risorse bibliografiche
 Risorsa bibliografica obbligatoria Risorsa bibliografica facoltativa
 Scheda Riassuntiva
 Anno Accademico 2014/2015 Scuola Scuola di Ingegneria Industriale e dell'Informazione Insegnamento 096233 - MATHEMATICAL AND NUMERICAL METHODS IN ENGINEERING [I.C.] 096229 - MATHEMATICAL AND NUMERICAL METHODS IN ENGINEERING [1] Docente Grasselli Maurizio Cfu 5.00 Tipo insegnamento Modulo Di Corso Strutturato

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - BV (478) NUCLEAR ENGINEERING - INGEGNERIA NUCLEARE*AZZZZ096295 - MATHEMATICAL METHODS IN ENGINEERING
Ing Ind - Inf (Mag.)(ord. 270) - MI (471) BIOMEDICAL ENGINEERING - INGEGNERIA BIOMEDICA*AZZZZ096233 - MATHEMATICAL AND NUMERICAL METHODS IN ENGINEERING [I.C.]

 Programma dettagliato e risultati di apprendimento attesi
 Mathematical and Numerical Methods in Engineering GOALS AND CONTENTS The didactical goal is twofold. First we intend to present some classical differential models of Continuum Mechanics, developing and analyzing some finite difference schemes for their approximation. Second we want to introduce the variational formulation of some boundary value problems together with the finite element method for their numerical approximation. The course is characterized by a constant synergy between modeling, theoretical aspects and numerical simulation. TOPICS First module of the course Mathematical Methods Differential calculus for functions of several real variables. Series of functions. Transport equation. Traffic flow models. Method of characteristics. Rankine-Hugoniot relation. Shock and rarefaction waves. Entropy condition. Heat equation. Well-posed problems. Separation of variables. Maximum principles. Fundamental solution. Cauchy problem in the half-space. Duhamel principle. Harmonic functions. Mean value properties. Maximum principles. Well-posed problems. Poisson’s formula for the disk. Newtonian potentials. String equations. Well-posed problems and separation of variables. D’Alembert formula. Kirchhoff formula and Huygens principle. Lebesgue integral. Projection theorem and Riesz representation theorem. Bilinear form, abstract variational problems and Lax-Milgram lemma. Schwartz distributions. Function spaces of finite energy (Sobolev spaces). Variational formulation of elliptic problems and applications to transport-reaction-diffusion equations.

 Note Sulla Modalità di valutazione

 Bibliografia

 Software utilizzato
 Nessun software richiesto

 Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
35.0
esercitazione
25.0
laboratorio informatico
0.0
laboratorio sperimentale
0.0
progetto
0.0
laboratorio di progetto
0.0

 Informazioni in lingua inglese a supporto dell'internazionalizzazione
 Insegnamento erogato in lingua Inglese
 schedaincarico v. 1.8.3 / 1.8.3 Area Servizi ICT 29/09/2023