logo-polimi
Loading...
Risorse bibliografiche
Risorsa bibliografica obbligatoria
Risorsa bibliografica facoltativa
Scheda Riassuntiva
Anno Accademico 2014/2015
Scuola Scuola di Ingegneria Industriale e dell'Informazione
Insegnamento 095909 - ENERGY CONVERSION A
Docente Valenti Gianluca
Cfu 10.00 Tipo insegnamento Monodisciplinare

Corso di Studi Codice Piano di Studio preventivamente approvato Da (compreso) A (escluso) Insegnamento
Ing Ind - Inf (Mag.)(ord. 270) - BV (477) ENERGY ENGINEERING - INGEGNERIA ENERGETICAEEHAZZZZ095909 - ENERGY CONVERSION A
EEPAZZZZ095909 - ENERGY CONVERSION A
EESAZZZZ095909 - ENERGY CONVERSION A
Ing Ind - Inf (Mag.)(ord. 270) - MI (424) INGEGNERIA NUCLEARE* AZZZZ095909 - ENERGY CONVERSION A

Programma dettagliato e risultati di apprendimento attesi

Energy conversion A (10 credits)

 

Higher Degree (“Laurea magistrale”) in Energy Engineering

School of Industrial Engineering – Bovisa Campus

code 095909

 

 

Objectives and contents of the course

The course, designed for those students who already possess competences in the energy sector, deals with all aspects related to the electricity generation in modern power plants. Thermodynamic, as well as economical, management, environmental, and strategic aspects are addressed. Despite most of the course is dedicated to large-scale fossil-fueled centralized power generation, other technologies, such as distributed generation, combined heat and power, are covered.

 

Description of the course topics

  1. The energy infrastructure context: energy resources, availability and forecast; environmental regulation and international treats; reliability and security of the energy infrastructure; tariffs and energy stock exchanges.
  2. Thermodynamic analysis of power cycles: first- and second-law analyses (energy and entropy balances) of diverse power cycles (open and close, fossil and renewable); physical meaning of entropy; choice of the heat source reservoir.
  3. Turbomachines for power cycles: stage optimization: free variable, objective function and constraints; velocity triangles and limits related to transonic and supersonic flows; effect of geometrical parameters on stage efficiency; similitude theory parameters and influence of the working fluid on the geometry.
  4. Working fluid properties and their relation with operational units and thermodynamic cycles: thermodynamic properties of ideal gases, vapors and liquids; influence on the design of turbomachines, heat exchanger, and power cycle (conventional and unconventional cycles, open and close cycles).
  5. Advanced steam cycles: historical evolution of pulverized-coal power plants; ultra-supercritical cycles; emission abetment, control logics and plant management; second-law analysis and future developments; clean coal technologies.
  6. Advanced gas turbines and combined cycle: historical evolution of gas turbines; combined cycles: state of the art and trends; second-law analysis and future developments; generalized theory of closed cycles.
  7. Cycles and operational units for nuclear power plants: overview of nuclear reactor; choice of nuclear source, moderating fluid and cooling fluid; choice of operational parameters for diverse technologies (water- and gas-cooled).
  8. Distributed generation technology: overview on conventional and advanced technology for combined heat and power (cogeneration) as well as combined cooling heating and power (trigeneration); hydrogen as an energy vector.
  9. Optimal management of power plants and economic considerations: problem definition, free variables, objective function, and constraints for the optimal management of a power plant. Feasibility studies and on-line monitoring.

 

 

Course organization and evaluation method

The course comprises lectures, computer lab hours (developing own codes or employing existing codes) on specific projects as well as technical visits at power plants. There is a non-compulsory written midterm exam on the first part of the course, including theoretical questions and numerical problems. The final exam (only oral) covers both lectures and computer labs; at the oral examination, it is mandatory handing in the written report describing the completed projects. The final exam for those students who pass successfully the midterm covers exclusively the second part of the program.

 

Recommended bibliography

Class notes; lecture printouts from scientific articles and textbooks on the course topics.

 

Precedenze consigliate: none

Precedenze obbligate: none


Energy conversion A (10 credits)

 

Higher Degree (“Laurea magistrale”) in Energy Engineering

School of Industrial Engineering – Bovisa Campus

code 095909

 

Tabella degli impegni per gli studenti

 

 

 

 

 

laboratorio

 

Argomento

lezioni

 

(ore std)

esercita-zioni

(ore std)

informa-tico

(ore std)

speri-mentale

(ore std)

proget-tuale

(ore std)

crediti

The energy infrastructure   context

8

4

 

 

 

1.14

Thermodynamic analysis of   power cycles

8

4

4

 

 

1.31

Turbomachines for power   cycles

10

4

 

 

4

1.53

Working fluid properties and   their relation with operational units and thermodynamic cycles

10

0

 

 

 

1.11

Advanced steam cycles

5

4

 

 

3

0.93

Advanced gas turbines and   combined cycles

5

8

 

4

 

1.22

Cycles and operational units   for nuclear power plants

8

0

 

 

 

0.89

Distributed generation   technology

6

4

 

 

3

1.04

Optimal management of power   plants and economic considerations

6

4

 

 

 

0.92

Totale

66

32

4

4

10

10.08

 

 

Note:

  1. non verrà pubblicata integralmente (appariranno i      soli totali) ma è fondamentale per la programmazione della didattica e      delle risorse da allocare
  2. in armonia con quanto proposto dalla commissione      didattica dell’Ateneo e dalla Facoltà, si usino i seguenti parametri di      corrispondenza ore / crediti:
    1. 9 ore di lezione = 1 credito
    2. 16 ore di esercitazione = 1 credito
    3. 24 ore di laboratorio / progetto / visite       tecniche / elaborazioni autonome / etc. = 1 credito

 


Energy conversion A (10 credits)

 

Higher Degree (“Laurea magistrale”) in Energy Engineering

School of Industrial Engineering – Bovisa Campus

code 095909

 

 

Brief description of the subjects

The course deals with all aspects related to the electricity generation in modern power plants. Thermodynamic, as well as economical, control, environmental, and strategic aspects are addressed. The course treats large scale, centralized power stations fed by fossil fuels or nuclear reactors as well as other applications, including small-scale distributed generation and electricity generation from renewable energy sources. The course addresses a variety of general topics fundamental for understanding the modern energy technologies: second-law analysis of open and closed power plants, thermodynamic properties of working fluids of power cycles, main components such as turbomachines and heat transfer equipment. Eventually, the optimization techniques of single and multiple power stations, as well as economic analyses are described.


 

Conversione dell’energia A (10 crediti)

 

per il corso di Laurea Magistrale in Ingegneria Energetica

Facoltà di ingegneria industriale – sede di Milano Bovisa

codice 095909

 

 

Descrizione sintetica dei contenuti del corso

Il corso si propone di illustrare criticamente le più moderne tendenze in atto nella conversione in energia elettrica delle varie fonti di energia, in un’ottica che consideri, oltre agli aspetti energetici, quelli economici, gestionali, ambientali e strategici. Si analizzano sia la produzione centralizzata di energia elettrica in grandi centrali alimentate da combustibili fossili e da reattori nucleari, sia altre tipologie applicative quali la generazione diffusa di piccola taglia e la generazione elettrica da fonti rinnovabili. Il corso tratta tematiche generali fondamentali per la comprensione delle tecnologie energetiche, quali l’analisi entropica di cicli chiusi e aperti, le proprietà termodinamiche dei fluidi di lavoro dei cicli di potenza, i componenti principali, turbomacchine e scambiatori di calore. Si descrive infine la metodologia per la gestione ottimizzata di singole centrali termoelettriche, di centrali cogenerative, di parchi di centrali.

 


Note Sulla Modalità di valutazione

Course organization and evaluation method

The course comprises lectures, computer lab hours (developing own codes or employing existing codes) on specific projects as well as technical visits at power plants. There is a non-compulsory written midterm exam on the first part of the course, including theoretical questions and numerical problems. The final exam (only oral) covers both lectures and computer labs; at the oral examination, it is mandatory handing in the written report describing the completed projects. The final exam for those students who pass successfully the midterm covers exclusively the second part of the program.


Bibliografia

Software utilizzato
Nessun software richiesto

Mix Forme Didattiche
Tipo Forma Didattica Ore didattiche
lezione
60.0
esercitazione
32.0
laboratorio informatico
4.0
laboratorio sperimentale
4.0
progetto
0.0
laboratorio di progetto
10.0

Informazioni in lingua inglese a supporto dell'internazionalizzazione
Insegnamento erogato in lingua Inglese
schedaincarico v. 1.7.0 / 1.7.0
Area Servizi ICT
26/05/2022