|
Anno Accademico |
2022/2023 |
Corso di Studi |
Dott. - MI (1385) Modelli e Metodi Matematici per l'Ingegneria / Mathematical Models and Methods in Engineering |
Anno di Corso |
1 |
Codice Identificativo |
056319 |
Denominazione Insegnamento |
CONTINUOUS DYNAMICAL SYSTEMS |
Tipo Insegnamento |
MONODISCIPLINARE |
Crediti Formativi Universitari (CFU) |
5.0 |
Programma sintetico |
The course provides both a basic knowledge of the theory of continuous dynamical systems, finite and infinite dimensional, and some advanced topics that are close to the state of the art research.
1. Introduction to continuous dynamical systems. Poincaré maps, bifurcations, stability, periodic orbits. Representation of solutions as series. Differential systems as fixed points problems.
2. Floquet theory for first-order systems, the Hill equation, the Mathieu equation, the Duffing equation, stability criteria for the Hill equation, some applications to the stability of bi-modal solutions in models for the dynamics of beams and degenerate plate-type structures.
3. Infinite-dimensional dissipative dynamical systems: definition, omega-limit sets, absorbing sets, attracting sets, global attractors, gradient systems, applications. |
Settori Scientifico Disciplinari (SSD) |
--
|
Scaglione
|
Nome
|
Programma dettagliato
|
Da (compreso)
|
A (escluso)
|
A
|
ZZZZ
|
Arioli Gianni
|
|
|