logo-polimi
Loading...
Manifesto
Cerca/Visualizza Manifesto
Dati Insegnamento
Stampe
Manifesto

Dettaglio Insegnamento

Contesto
Anno Accademico 2021/2022
Corso di Studi Dott. - MI (1385) Modelli e Metodi Matematici per l'Ingegneria / Mathematical Models and Methods in Engineering
Anno di Corso 1

Scheda Insegnamento
Codice Identificativo 055023
Denominazione Insegnamento DIFFERENTIAL GEOMETRY OF ELASTIC SURFACES, WITH APPLICATIONS TO SHELL THEORY
Tipo Insegnamento MONODISCIPLINARE
Crediti Formativi Universitari (CFU) 5.0
Programma sintetico Part I: An introduction to the differential geometry of surfaces (15h) 1 Curvilinear coordinates on a surface 2 First fundamental form 3 Areas and lengths on a surface 4 Second fundamental form; curvature on a surface 5 Principal curvatures; Gaussian curvature 6 Covariant derivatives of a vector field defined on a surface; the GauŅ and Weingarten formulas 7 Necessary conditions satisfied by the first and second fundamental forms: the GauŅ and Codazzi-Mainardi equations; GauŅ Theorema Egregium 8 Existence of a surface with prescribed first and second fundamental forms 9 Uniqueness up to proper isometries of surfaces with the same fundamental forms. 10 Continuity of a surface as a function of its fundamental forms Part II: Applications to shell theory (10h) 1 The nonlinear Koiter shell equations 2 The linear Koiter shell equations 3 Korns inequalities on a surface 4 Existence and uniqueness theorems for the linear Koiter shell equations; covariant derivatives of a tensor field defined on a surface
Settori Scientifico Disciplinari (SSD) --

Dettaglio
Scaglione Docente Programma dettagliato
Da (compreso) A (escluso)
A ZZZZ Ciarletta Pasquale, Ciarlet Philippe G
manifestidott v. 1.7.0 / 1.7.0
Area Servizi ICT
12/08/2022